Lecture 15: Public key infrastructure

e Lab 7 due Monday 4/1 at 11pm

o Office hours this week moved to Wednesday at 11am-1pm
» Guest lectures on cryptography + law starting on Thursday

 Read The Moral Character of Cryptographic Work by Friday

Part 3: Generate, exchange, evolve, and delete keys

Last time: Needham-Schroeder protocol

Objective: with the help of a trusted server, Alice + Bob agree on a shared key

I \Want to make a new shared symmetric key Kag

Kerberos = Key Management for Access Control

“This bar Is pretty
good, but you have
to go stand In line
for a ticket before
they serve you.”

Source:
twitter.com/sweis/status/982272891948421120

Today: Public key infrastructure

Lower trust in the server, at the expense of using more expensive cryptography

I \Want to make a new shared symmetric key Kag

Name Unique key
Alice

Bob

Course roadmap

| N

Protected
Elegant |]
- communication |

protocols —

Utilitarian
tools

. Block | | Hash |
{ ciphers | | functions |

N

| Random(ish) ﬁ
| permutations |

Course roadmap

| Authenticated |
| key agreement |

Protected
Elegant |]
- communication |

protocols —

Utilitarian

Block f ?‘ Hash f T‘ Modular |
tools ' |

| ciphers | | functions | |arithmetic]

N

i Random(ish) i
| permutations |

ﬂ‘u “ 1

| |
R KN

il Lo

Diffie-Hellman key agreement (last Friday’s discussion)

Protocol (for a publicly known g) Analysis

Choose a randomly Choose b randomly « Correctness: commutativity
COmpUte A = ga COmpU B = gb Ab = (ga)b = gab = (gb)a = Ba

« Security: to learn the key, a passive
Eve must solve following problem

Output B2 — Knows g, g2, gb

— ab
Shared secret = gab Wants to find g

« Forward secrecy: Choices of a, b are
ephemeral, can delete when done

 Active attacker can cause problems!

How to perform key exchange securely?

Modular arithmetic Elliptic curves

\ e . o & y ¥ snl
,,;.:\..F ?; ¥ _;;__ | < g :' Sl e “aaf) “.;‘ J £ ’ 48 1
SN L . IR YA ! R /-
N&E> = XII N
N =8 - \ - % 2
LAY \ - . Ny LN N .
.ty EPEE o ° A Q
| B ol . A y R ‘} X4 ':4-".
- o | - 7 ’ ,--", e : Y : g \ b
e o .\.' ‘ : .‘ - ; . T ,.- £ :
iy ’ : '\o ' . /
! - | A o T ‘
. <« 4 i y & 4 A
‘A 1. 7 b
i [’3:-.‘ ¢ ' : 258
N . ;
.
Za%

Vv’

}</ |

. Raise a constant to any power, o Elliptic curve: a cubic equation
e.g. X ~ 3x (mod 7) y2=x3+ax + b (mod p)

4
—‘ - 0 >
P> o ¥

1 2 3 4 5 6 e Consider set of points on this curve

e We can “multiply” points using the
ruleP-Q-R=1
 Permutation, but hard* to invert

* = really need to take the group of quadratic residues (i.e., the even half of the truth table)

Diffie-Hellman key agreement

Protocol (for a publicly known g)

Choose a randomly Choose b randomly
Compute A = ga Compute B = gb

How do Alice and
< Bob know that Solution:

they’re talking Use a MAC?
with each other?

Output Ba

Shared secret = gab

Let’s build a public method to authenticate message origin

secret key SK . public key PK
» send A along with L &
uth \ signature o = SignSK(A) & check
IMSE A : VerifypK (A, O')
forge?
+ g (make
valid A, T)

* In the symmetric case, Alice & Bob have a key that nobody else has
* As aresult, Bob knows Alice sent A and that the message was intended for him

e Tag Is also deniable because either Alice or Bob could have made it

» In the public case, Alice has a secret SK and everyone knows corresponding PK

e So, anyone in the world can verify that Alice wrote that message (to somebody...)

* Also, asymmetry leads to non-deniability: Bob can't make o anymore

Security for public-key signatures

secret key SK s, public key PK
» send A along with
auth signature o = Sign<(A) . heck
MSE A VerifypK (A, O')

EU-CMA security similar to before: Alice baits Mallory into producing a forgery

Alice Mallory
@y © submitA Mallory wins if
@ choose SK, . D —=@ output(A*, c*) 1. Valid forgery
give Mallory PK receive o 2. It's new

Modular arithmetic

- * ey
([([. o 3 o ‘: . PR o
I~ Gy A e T . e s
. BTy] D, ! . I)
4::’\' Py " ol - § 2 <
. a—ai il SRy |
a7) ::-.‘ ! ; v N - "7 =, _V‘*i?"‘ ‘
Y - r A ‘T / (A 3 R
" ey ¢ 7 N Y
B 4 N " v & 0
. i] ’] ‘
i I {4 % |)
. . ! 1 ’ y
y ‘ :
3 o 5 \ >
8 ‘1SN . /
e | - P 2

 TWo common methods
e (EC)DSA — NIST standard

e Schnorr signatures — simpler
but patented, will see on Friday

How to make digital sighatures?

RSA (Rivest, Shamir, Adleman)

e Relies (more or less) on the

hardness of factoring N =pqg

e Less commonly used nowadays

» Will explore in this week’s lab

Combining symmetric encryption + public signatures

* In the symmetric case, we learned
that Enc-then-MAC Is the best option

* Intuition: Never expose the decryption
key to an invalid message

e Does this technique work as well
with public key signatures?

Combining symmetric encryption + public signatures

* In the symmetric case, we learned
that Enc-then-MAC Is the best option

* Intuition: Never expose the decryption
key to an invalid message

Pretend to be Alice, __
send PublicSign,(C) ‘

» Does this technique work as well - 2,
with public key signatures? . ‘ 2
W
Let C = SymEnc,y,(P)

1Ll decrypt C using
* Answer: No!

symmetric key K,g!
Send PublicSign,(C)
» Issue: Mallory can receive ciphertexts * 4

from Alice, claim them as her own!

 Can lead to an oracle attack, as
occurs with Apple’s IMessage

Non-repudiable crypto (xkcd.com/538)

A CRYPTO NERD'S
IMAGINATION &

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOULAR,
CLOSTER TO CRACK \T.

NO GOoD! ITS
U096 -BI\T RSA\

BLAST! OUR)
EVIL PLAN
1S FOILED! ™~

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TEUS U5 THE PASSWORD.

\ Gor 1T,

O%)Q}

Better combination of public signatures + symmetric crypto

Choose a randomly Choose b randomly 1. Alice + Bob sign their D-H key
Compute A = g2 Compute B = g° exchange messages

R A signsa(A)
_B, signsia(B)

. Alice + Bob verify signatures on
each others’ messages

Use agreed-upon key for (deniable)

Output B2 Outut Ab) , ,
symmetric authenticated encryption

| Remaining question: how do Alice Google.com in Firefox:
iand Bob learn the other’s public key? fechnical Detalls

Connection Encrypted (TLS_ECDHE_RSA WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

BU login page in Firefox (2017):
Technical Details

Connection Encrypted (TLS_RSA WITH_AES_256_CBC_SHA, 256 bit keys, TLS 1.2)

Public key infrastructure

 There Is a certificate authority
that knows everybody’s keys

» (Think of it like a telephone book)

* Anyone can query the authority
to learn someone else’s key

e CA signs responses so that
everybody knows they are legit

* Alice knows the CA's public key
because 1t is included in her OS

g7 /i’. y
° " g B B R
s A s /"/ ¥ -
5 .}/‘ . 7 ’ ",A"-J JI,
skPK|\"= o _z
o i P W gt I /

N

“I want Bob’s
public key”

Slight improvement

“HI, who are you?” + nonce

e Alice wants to talk to Bob, not CA

e Bob can forward CA’s attestation
that signing key belongs to him

e (Shown: simplified TLS handshake)

What happens if Bob's secret key S is compromised?

compromise recovery time
safe? < pwned > safe?
Yes! No...
Unless Mallory has a time If Mallory has Bob’s secret
machine, signatures that key, then she can sign
Alice verified before a messages and Alice will
breach must be valid. believe they are from Bob.

Backward security technique #1: Cert expiration

“HI, who are you?” + nonce

e Alice wants to talk to Bob, not CA

Signskg(nonce) 3

 Bob can forward CA’s attestation ™

that signing key belongs to him | -
SIgNskpk . B

e (Shown: simplified TLS handshake)

Backward security technique #2: Key revocation

 The PKI binds a public key to
your identity

“Has Bob's key

e If you lose control of your
been revoked?

public key, you should tell the
CA to break this binding

“No, It Is
« Every CA maintains a certificate still valid”
revocation list that anyone can

query

Backward security technique #2: Key revocation

 The PKI binds a public key to ‘
your identity

“Has Bob's key

e If you lose control of your
been revoked?

public key, you should tell the

" " " S SkB . | "
CA to break this binding ignske(“Lost key”)

“Yes, do
« Every CA maintains a certificate not use It”
revocation list that anyone can
query

Unique key

Key management = initial exchange + subsequent evolution

Server trust? Cryptoused Method

Full Symmetric Needham-Schroeder = Kerberos system
Partial Asymmetric (Authenticated) Diffie-Hellman key exchange
None Symmetric Key evolution, starting from an initial shared symmetric key

Next time: Key evolution

