
Lecture 15: Public key infrastructure

• Lab 7 due Monday 4/1 at 11pm

• Office hours this week moved to Wednesday at 11am-1pm

• Guest lectures on cryptography + law starting on Thursday

• Read The Moral Character of Cryptographic Work by Friday

Part 3: Generate, exchange, evolve, and delete keys

key K

??

key K

Last time: Needham–Schroeder protocol

Objective: with the help of a trusted server, Alice + Bob agree on a shared key

Shared symmetric key K
AS Shared sy

mmetric
 ke

y K
BS

Want to make a new shared symmetric key KAB

Kerberos = Key Management for Access Control

“This bar is pretty
good, but you have
to go stand in line
for a ticket before
they serve you.”

 
Source: 
twitter.com/sweis/status/982272891948421120

Today: Public key infrastructure

Lower trust in the server, at the expense of using more expensive cryptography

Want to make a new shared symmetric key KAB

Name Unique key
Alice

Bob

Alice

Bob

Course roadmap

Random(ish)
permutations

Utilitarian
tools

Elegant
protocols

Block
ciphers

Hash
functions

?

Protected
communication

?

??

Course roadmap

Random(ish)
permutations

Utilitarian
tools

Elegant
protocols

Block
ciphers

Hash
functions

Modular
arithmetic

Protected
communication

Authenticated
key agreement

??

Diffie-Hellman key agreement (last Friday’s discussion)

Protocol (for a publicly known g) Analysis

Shared secret = gab

• Correctness: commutativity 
Ab = (ga)b = gab = (gb)a = Ba

• Security: to learn the key, a passive
Eve must solve following problem

– Knows g, ga, gb

– Wants to find gab

• Forward secrecy: Choices of a, b are
ephemeral, can delete when done

• Active attacker can cause problems!

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A
B

Output Ba Output Ab

kAM kMB

How to perform key exchange securely?

• Raise a constant to any power,
e.g. x ↦ 3x (mod 7) 
 
 

• Permutation, but hard* to invert

• Elliptic curve: a cubic equation 
y2 = x3 + ax + b (mod p)

• Consider set of points on this curve

• We can “multiply” points using the
rule P · Q · R = 1

x 1 2 3 4 5 6

3x 3 2 6 4 5 1

* = really need to take the group of quadratic residues (i.e., the even half of the truth table)

Elliptic curvesModular arithmetic

Diffie-Hellman key agreement

Protocol (for a publicly known g)

Shared secret = gab

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A
B

Output Ba Output Ab

How do Alice and
Bob know that
they’re talking
with each other?

Solution:
Use a MAC?

MAC$

Verify$ No!

MAC$

key Ksecret key SK

validate 
T = MACK(A)
check 
VerifyPK (A, σ)

key Kpublic key PK

Let’s build a public method to authenticate message origin

• In the symmetric case, Alice & Bob have a key that nobody else has
• As a result, Bob knows Alice sent A and that the message was intended for him

• Tag is also deniable because either Alice or Bob could have made it

• In the public case, Alice has a secret SK and everyone knows corresponding PK
• So, anyone in the world can verify that Alice wrote that message (to somebody…)
• Also, asymmetry leads to non-deniability: Bob can’t make σ anymore

send A along with 
signature T = MACK(A)auth 

msg A
forge?
(make 
valid A, T)

send A along with 
signature σ = SignSK(A)

Security for public-key signatures

EU-CMA security similar to before: Alice baits Mallory into producing a forgery

auth 
msg A

secret key SK
send A along with 

signature σ = SignSK(A)

public key PK

check 
VerifyPK (A, σ)

❶ choose SK,  
give Mallory PK

❷ submit A

receive σ

Mallory wins if
1. Valid forgery
2. It’s new

❸ output(A*, σ*)

Alice Mallory

How to make digital signatures?

• Similar math 
as with key 
exchange

• Two common methods

• (EC)DSA — NIST standard

• Schnorr signatures — simpler  
but patented, will see on Friday

• Relies (more or less) on the
hardness of factoring N = p q

• Less commonly used nowadays

• Will explore in this week’s lab

RSA (Rivest, Shamir, Adleman)Modular arithmetic

Combining symmetric encryption + public signatures

• In the symmetric case, we learned
that Enc-then-MAC is the best option

• Intuition: Never expose the decryption
key to an invalid message

• Does this technique work as well
with public key signatures?

 

 

PublicSignA(SymEncAB(P))

Combining symmetric encryption + public signatures

• In the symmetric case, we learned
that Enc-then-MAC is the best option

• Intuition: Never expose the decryption
key to an invalid message

• Does this technique work as well
with public key signatures?

• Answer: No!

• Issue: Mallory can receive ciphertexts
from Alice, claim them as her own!

• Can lead to an oracle attack, as
occurs with Apple’s iMessage

Let C = SymEncAM(P)
Send PublicSignA(C)

Will decrypt C using 
symmetric key KAB!

Pretend to be Alice,
send PublicSignA(C)

Non-repudiable crypto (xkcd.com/538)

Better combination of public signatures + symmetric crypto

1. Alice + Bob sign their D-H key
exchange messages

2. Alice + Bob verify signatures on
each others’ messages

3. Use agreed-upon key for (deniable)
symmetric authenticated encryption

Google.com in Firefox:

BU login page in Firefox (2017):

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A, signskA(A)

B, signskB(B)

Output Ba Output Ab

Remaining question: how do Alice
and Bob learn the other’s public key?

Public key infrastructure

• There is a certificate authority
that knows everybody’s keys

• (Think of it like a telephone book)

• Anyone can query the authority
to learn someone else’s key

• CA signs responses so that
everybody knows they are legit

• Alice knows the CA’s public key
because it is included in her OS

Name Unique key
Alice

Bob

Alice

Bob

“I want Bob’s 
public key”

BobSignskPKI()

Slight improvement

• Alice wants to talk to Bob, not CA

• Bob can forward CA’s attestation
that signing key belongs to him

• (Shown: simplified TLS handshake)

Name Unique key
Alice

Bob

Alice

Bob

“Hi, who are you?” + nonce

BobSignskPKI()

SignskB(nonce)

What happens if Bob’s secret key SK is compromised?

timecompromise recovery

pwnedsafe? safe?

Yes!	
Unless	Mallory	has	a	time	
machine,	signatures	that	
Alice	verified	before	a	
breach	must	be	valid.

No…	
If	Mallory	has	Bob’s	secret	
key,	then	she	can	sign	
messages	and	Alice	will	
believe	they	are	from	Bob.

Backward security technique #1: Cert expiration

• Alice wants to talk to Bob, not CA

• Bob can forward CA’s attestation
that signing key belongs to him

• (Shown: simplified TLS handshake)

Name Unique key
Alice

Bob

Alice

Bob

“Hi, who are you?” + nonce

BobSignskPKI(, valid from 1/1/19 to 12/31/19)

SignskB(nonce)

Backward security technique #2: Key revocation

• The PKI binds a public key to
your identity

• If you lose control of your
public key, you should tell the
CA to break this binding

• Every CA maintains a certificate
revocation list that anyone can
query

Name Unique key
Alice

Bob

Alice

Bob

“Has Bob’s key 
been revoked?

Bob

“No, it is 
still valid”

Backward security technique #2: Key revocation

• The PKI binds a public key to
your identity

• If you lose control of your
public key, you should tell the
CA to break this binding

• Every CA maintains a certificate
revocation list that anyone can
query

Name Unique key
Alice Alice

Bob

SignskB(“Lost key”)

“Has Bob’s key 
been revoked?

“Yes, do 
not use it”

Key management = initial exchange + subsequent evolution

Server trust? Crypto used Method
Full Symmetric Needham-Schroeder !=> Kerberos system

Partial Asymmetric (Authenticated) Diffie-Hellman key exchange

None Symmetric Key evolution, starting from an initial shared symmetric key

Next time: Key evolution

