
Lecture 16: Key evolution, aka ratcheting

• Lab 8 posted on Piazza (not Gradescope!), due Monday 4/8 at 11pm

• Guest lectures next week on (1) Encryption and the Fifth Amendment
and (2) data privacy laws in the US and European Union

• Read next week’s reading before Tuesday’s lecture

Course roadmap

Random(ish)
permutations

Utilitarian
tools

Elegant
protocols

Block
ciphers

Hash
functions

Modular
arithmetic

Protected
communication

Authenticated
key agreement

??

Course roadmap

Random(ish)
permutations

Block
ciphers

Hash
functions

Modular
arithmetic

Protected
communication

Authenticated
key agreement

Key
evolution

Signal
messaging

Utilitarian
tools

Elegant
protocols

Part 3: Generate, exchange, evolve, and delete keys

key K

??

key K

Security objective 1: Partial sender deniability

show me your phone

P, K, C

C = AuthEncK(P)

did you write P?no, Bob wrote it!

Security objective 2: Forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

Forward (aka pre-
compromise) secrecy:
past messages remain
confidential even if secret
state is exposed later

Backward (aka post-
recovery) secrecy:
future messages remain
confidential even if secret
state is compromised and
then the device recovers

Last time: Diffie-Hellman key agreement

Protocol (for a publicly known g)

Shared secret = gab

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A
B

Output Ba Output Ab

Last time: PKI for initial key exchange

Want to make a new shared symmetric key KAB

Name Unique key
Alice

Bob

Alice

Bob

Public key signatures Public key encryption

• Only Alice can generate signatures
• Anybody can verify
• Security guarantee: EU-CMA

• Anybody can send ciphertexts
• Only Bob can decrypt + read
• Security guarantee: CPA or CCA

Authenticated Private

SignAlice

EncBob

SignCryption = public key version of Auth Enc
Construction
• Integrity via pk sign
• Confidentiality via pk encrypt

But any issue persists
• Non-repudiable
• Risk of device compromise

SignAlice

EncBob EncBob

SignAlice

What we want
• Deniability
• Forward secrecy

SignCrypt(message)

Consequences of losing

• Problem: Eve forges msgs in future
• Response: Alice can revoke her key

• Problem: Eve reads msgs from past
• Response: ???

Authenticated Private

Public key encryptionPublic key signatures

Key encapsulation !-> Hybrid encryption

If you must use public key enc…

• Only use it once in order to encrypt
(or encapsulate) a symmetric key
that you will use from now onward

• This object is formally called a 
key encapsulation mechanism (KEM)

• This overall procedure is called
hybrid encryption

EncPK (symkey)

Today: Key evolution

Server trust? Crypto used Method
Full (learns keys) Symmetric Needham-Schroeder !=> Kerberos system

Partial (need PKI) Asymmetric (Authenticated) Diffie-Hellman key exchange

None Symmetric Key evolution, starting from an initial shared symmetric key

Key evolution

Question: Once Alice and Bob negotiate a shared symmetric key KAB for
authenticated encryption, must they re-execute another (expensive) key
negotiation protocol each time they want to update the key?

Basically, seek Authenticated Encryption with a new updating mechanism

• KeyGen: randomly choose key K of length λ, e.g. uniform in {0,1}λ

• AuthEncK (private P, authenticated A, nonce N) → ciphertext C

• AuthDecK (C, A, N) → P or

• KeyUpdate (K) → K’ where Alice + Bob agree to use K’ from now onward, and
cannot compute K from K’

T

Key evolution via hash functions

Idea: Once we have a single shared key KAB, expand using a chain of hash functions

KAB → H(KAB) → H(H(KAB)) → H(H(H(KAB))) → …

Algorithm:

• Alice + Bob agree on key KAB to use for auth enc

• After some time has passed, they can 
evolve their key by updating K ← H(K)

• Here, “time” can denote actual wall-clock time or a message counter

• Alice + Bob must stay in sync, or else the chain breaks & they need to redo key agreement

• Crucially, they ensure that old values of K are deleted from their system! 
Evolution relies on the fact that Mallory cannot steal something that isn’t around to be stolen

AuthEncK(P1)

AuthEncH(K)(P2)
…

Axolotl protocol, aka Signal protocol, aka double ratchet

Used in a messaging system near you!

Signal

WhatsApp

Facebook Messenger

Google Allo

Skype

• Body Level One

• Body Level Two

Signal combines key exchange and evolution

Server trust? Crypto used Method
Full (learns keys) Symmetric Needham-Schroeder !=> Kerberos system

Partial (need PKI) Asymmetric (Authenticated) Diffie-Hellman key exchange

None Symmetric Key evolution, starting from an initial shared symmetric key

Last time: Public key exchange + AE !=> Deniability
Choose a ← [q]
Compute A = ga

Choose b ← [q]
Compute B = gb

A
B

Output Ba Output Ab

1. Diffie-Hellman key exchange
 (* But use the authenticated version)

2. Derive a symmetric key
K = KDF(Ba) K = KDF(Ab)

3. Use authenticated encryption
AuthEncK(P1)

AuthEncK(P2)
…

But how can we get forward secrecy too?

Today: Key evolution !=> forward secrecy!
Choose a ← [q]
Compute A = ga

Choose b ← [q]
Compute B = gb

A
B

Output Ba Output Ab

Evolve
public key

K = KDF(Ba) K = KDF(Ab)

Evolve
symm key

AuthEncK(P1)

AuthEncK(P2)
…

Signal messaging protocol (simplified)

1. Key evolution
• Use each key to encrypt only 1 message

• Concern: If initial K is lost, whole chain insecure
KDF

Message key1

KDF

Message key2

Message key3

KDF

Signal messaging protocol (simplified)

1. Key evolution
• Use each key to encrypt only 1 message

• Concern: If initial K is lost, whole chain insecure

2. Key derivation
• No direct link betweeen message keys

• Engineering: Handle out of order messages?

KDF Message key1

KDF Message key2

Message key3KDF

Chain key

Chain key

Chain key

Signal messaging protocol (simplified)

1. Key evolution
• Use each key to encrypt only 1 message

• Concern: If initial K is lost, whole chain insecure

2. Key derivation
• No direct link betweeen message keys

• Engineering: Handle out of order messages?

3. Key ratcheting
• Can recover from chain key compromise

• Opportunity: If ephemeral secret is unknown to
adv, then ∃ potential for post-compromise secrecy

KDF Message key1

KDF Message key2

Message key3KDF

Chain key

Chain key

Chain key

Shared secret

Shared secret’

Double ratchet rules

1. When a message is sent or received, a symmetric ratchet KDF step is
applied to the sending or receiving chain to derive a new message key

2. When a new ratchet public key is received, a public ratchet step is
performed prior to the symmetric-key ratchet to replace the chain
keys

Let’s build each ratchet, then connect them to each other

Symmetric ratchet

• Modified version of the “chain of hash functions”
idea K → K1 = H(K) → K2 = H(K1) → …

• Alice and Bob maintain two such ratchets, one for
Alice !-> Bob messages and other for Bob !-> Alice

• Delete every chain + message key after using it  
 
“Because message keys aren't used to derive any
other keys, message keys may be stored without
affecting the security of other message keys. This
is useful for handling lost or out-of-order
messages”

KDF Message key1

KDF Message key2

Message key3KDF

Chain key1

Chain key2

Chain key3

Source: https://whispersystems.org/docs/specifications/doubleratchet/ Chain key4

Public ratchet
Use Diffie-Hellman key exchange to create the “shared secrets”

A2 = ga2Choose a2 ← [q]

Shared secret ga1 · b2

Choose b2 ← [q]B2 = gb2

Shared secret ga2 · b2

B1 = gb1 Choose b1 ← [q]

Shared secret ga1 · b1

Choose a1 ← [q] A1 = ga1

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Add a third chain to improve post-compromise secrecy

Source: https://whispersystems.org/docs/specifications/doubleratchet/

How do we start
this process?
How does Alice
learn Bob’s first
D-H message if
Bob is offline?

Putting everything together

Evolve
public key

Evolve
symm key

Choose a ← [q]
Compute A = ga

Choose b ← [q]
Compute B = gb

A
B

Output Ba Output Ab

K = Hash(Ba) K = Hash(Ab)

AuthEncK(P1)

AuthEncK(P2)
…

Ephemeral
secret

AuthEnc is
deniable

Deniable Fwd/back secure

Why Signal provides forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

“The parties derive new keys
for every Double Ratchet
message so that earlier keys
cannot be calculated from
later ones.”

“The parties also send Diffie-
Hellman public values
attached to their messages.
The results of Diffie-Hellman
calculations are mixed into
the derived keys so that later
keys cannot be calculated
from earlier ones.”

Quotes from https://signal.org/docs/specifications/doubleratchet/

Ephemeral utopia

No long-term keys ⇒ great forward secrecy

• Message key used to AuthEnc a message is used once and tossed

• Chain key used to construct msg key is refreshed in each public ratchet

• Diffie-Hellman key pairs chosen ephemerally in each public ratchet

Wait… actually, is this a utopia or a dystopia?

• If you don’t have any long-term state, then who are you?!

• Resolution: Also have a long-term key, Signal maintains a PKI

Source: https://whispersystems.org/blog/safety-number-updates/

Solution: a more involved Triple-DH protocol

Source: https://www.securemessagingapps.com

Source: https://www.eff.org/deeplinks/2018/03/  
Source: thinking-about-what-you-need-secure-messenger

