
Lecture 17: Hashing, revisited

• Lab 10 will be posted today, due Wednesday 4/24 at 11pm

• You will be able to answer the first 2 questions after today’s lecture

• Question 3 will depend on Thursday’s lecture

• Lab 11 will be posted Tuesday 4/23 and due Wednesday 5/1

• Reminder: my office hours have moved to Thursdays at 11am-1pm

Course roadmap

Random(ish)
permutations

Block
ciphers

Hash
functions

Modular
arithmetic

Protected
communication

Authenticated
key agreement

Key
evolution

Signal
messaging

Utilitarian
tools

Elegant
protocols

Part 3: Generate, exchange, evolve, and delete keys

key K

??

key K

Randomness ⇒ Unpredictability ⇒ Secrecy

Part 4: Cryptography meets the law

• You can be compelled to provide access, subject to 4th + 5th Amendments

• Technology provider can be compelled to provide access

Source: csis.org/analysis/
effect-encryption-lawful-
access-communications-
and-data

Auguste Kerckhoffs’ principles to protect communication

1. The system must be practically, if not mathematically, indecipherable

2. It should not require secrecy, and it should not be a problem if it falls into enemy hands

3. It must be possible to communicate and remember the key without using written notes,
and correspondents must be able to change or modify it at will

4. It must be applicable to telegraph communications

5. It must be portable, and should not require several persons to handle or operate

6. Lastly, given the circumstances in which it is to be used, the system must be easy to use
and should not be stressful to use or require its users to know and comply with a long
list of rules

Source: La Militaire, 1883

Reminder from Part 1: Data at rest protection

Generate master key
from things that you
know, are, and have
(rather than storing it)

Derive keys that live
only for limited time

Use these to wrap a unique key for each file

Hash function = 1 public codebook

• Hash function H : {0,1}∞ → {0,1}out

• Compresses long messages into short digests

• Most popular example in use today: SHA-256

• Random oracle is an ideal public codebook

X Y
aba nr
abs mb
ace yd
act wv
add je
ado hg
aft uv
age zm
ago ds
aha ae
aid kf

⋮ ⋮

zip cy
zoo dx

R

Hash function

• Cannot invert! Given y = H(x)
for randomly chosen x, tough
to find any preimage x’

• Cannot collide! Given only H,
difficult to find two messages
with the same digest

finite 
output set

infinite input set

Password hashing

• Can use to protect passwords!

• Don’t store pwd

• Instead store H(pwd)

• Collision resistance !-> all
incorrect password guesses
will have different hashes

• Problem: preimage resistance
only applies to random x, and
passwords are anything but
random…

Concentration of passwords

• Passwords tend to follow a
Zipf’s law distribution 
 

• Countermeasure: 
If # passwords is small, then
we must make the time to
compute each hash large

Pr[kth most common password] ∝
1
k

Sources: eprint.iacr.org/2014/631.pdf and jbonneau.com/
doc/B12-IEEESP-analyzing_70M_anonymized_passwords.pdf

Password-based key derivation function

• Threat we are trying to mitigate: a well-funded attacker who either

• Brute forces the (not too large) password space

• Obtains your personal phone or organization’s /etc/passwd file

• Initial approach: generate key on the fly, don’t write it down anywhere

• Crypto primitives

• PBKDF2: NIST standard, requires substantial CPU time to compute

• Recently, a new wave of hash functions (scrypt, bcrypt, argon2) attempt to
reduce parallelization by requiring substantial CPU + RAM to run

PBKDF2 inputs

Data

• P: Password

• S: Salt, aka nonce

• L: Output length, in blocks

• C: Iteration count

B(K, M): keyed pseudorandom
function like a block cipher or
HMAC (just as we used in Signal)

PBKDF2 construction

• Output T1 || T2 || … || TL

• Definitely L blocks of something!

• Each block Ti = U1 ⊕ U2 ⊕ … ⊕ UC

• Must compute all Uj to learn Ti

• For each i, initial U1 = S || i

• Depends on seed

• Subsequent Uj = B(P, Uj-1 || i)

• Must compute sequentially

The limits of introversion

• Key derivation functions like PBKDF2 are the “best possible” solution for a
non-interactive login process, like to your own laptop or phone

• They eliminate any 1-bit “ is pwd correct?” check; instead use key to encrypt device

• But they are not perfect! An attacker with enough CPU/RAM can eventually
find the password, especially if the pwd is easy to guess

• We call this attack an offline dictionary attack

• Dictionary attack !-> attacker finds a dictionary of common passwords to guess

• Offline !-> attacker can conduct this attack on her own machine, and then only
make 1 guess on the real victim’s machine

• (Note: can try to use hardware to localize computing to target device)

The power of interaction

• Countermeasure: make each guess require network communication,
and eventually cut off the attacker if she makes too many attempts

• Here, we say that the attacker must run online dictionary attack

• Even if Mallory compromises the 
contents of Bob’s hard drive,  
then security reverts to an 
offline dictionary attack pwd p hash H(p)

The necessity of interaction

• If Alice wants to authenticate to
bob.com, does she send p or H(p)?

• Alice sends H(p) !-> the stored
hashed database is very sensitive

• Alice sends p !-> the transmission
itself is very sensitive

password p
database of H(p), 
where H = pbkdf2, etc

p or H(p)?

–Ben Adida

“Cryptography is how people get things done when they
need one another, don’t fully trust one another, and have
adversaries actively trying to screw things up.”

Source: benlog.com/2018/01/07/crypto-as-in-crypto/

