
Lecture 18: (Password based) hashing, continued

• Lab 10 has been posted, due Wednesday 4/24 at 11pm

• Lab 11 will be posted Tuesday 4/23 and due Wednesday 5/1

• Reminder: my office hours have moved to Thursdays at 11am-1pm

Hash function = 1 public codebook

• Hash function H : {0,1}∞ → {0,1}out

• Compresses long messages into short digests

• Most popular example in use today: SHA-256

• Random oracle is an ideal public codebook

• Concrete hash functions must provide:

• Preimage resistance

• Second preimage resistance

• Collision resistance

X Y
aba nr
abs mb
ace yd
act wv
add je
ado hg
aft uv
age zm
ago ds
aha ae
aid kf

⋮ ⋮

zip cy
zoo dx

R

Password-based key derivation function

• Threat we are trying to mitigate: a well-funded attacker who either

• Brute forces the (not too large) password space

• Obtains your personal phone or organization’s /etc/passwd file

• Mantra: generate key on the fly, don’t write it down anywhere

PBKDF2: Password !-> Cryptographic key

pbkdf2(string password, string salt, int count):

 string key = ‘’

 U0 = S

 for(j = 1 to count):

 Uj = prf(password, Uj-1)

 key = key ⊕ Uj

 return key

use any block
cipher or MAC

long runtime,
and steps are sequential

simplified version with
output length == 1 block

Why output a crypto key?

• We could have simply built a function that maps password "-> boolean
that indicates whether the password is correct or not

• But shared knowledge of a cryptographic key allows you to perform
future crypto operations, such as protecting customers’ data on your
site so only the legitimate client can decrypt it later

• 1-bit checks of claimed_pwd == stored_pwd are more vulnerable: there
exist side channels to learn or even directly flip this boolean value

Offline vs online dictionary attack

• PBKDF2 is vulnerable to an offline dictionary attack in which Mallory:

• Compromises the target device to learn salt, count, pbkdf2(pwd, salt, count)

• Guesses many passwords on her own computing cluster, perhaps in parallel

• Makes only 1 password guess on the target device

• Online dictionary attack requires  
Mallory to check guesses with server

• Opportunity for rate limiting
pwd p hash H(p)

Password dilemma

Alice wants to authenticate to bob.com. Does she send p or H(p)?

• If Alice sends H(p), then the stored hashed database is very sensitive

• If Alice sends p, then the transmission itself is very sensitive ("<- done in practice)

password p
database of H(p), 
where H = pbkdf2, etc

p or H(p)?

http://bob.com

–Ben Adida

“Cryptography is how people get things done when they
need one another, don’t fully trust one another, and have
adversaries actively trying to screw things up.”

Source: benlog.com/2018/01/07/crypto-as-in-crypto/

Objective: verify passwords without seeing them!

• Alice knows a password p but
doesn’t want to share it with
anyone, even bob.com

• If bob.com never sees the
password then he cannot
accidentally store it

pwd p
salt s
verifier v

Password authenticated key exchange (PAKE)

• Signup phase: real Alice registers a password p, gives verification string
v that Bob can use to detect if he’s talking to someone who knows p

• Login phase: the parties interact, after which

• If Bob is speaking to the real Alice with password p "-> they get a shared key k

• If Bob is speaking to Mallory who doesn't know p "-> he learns this fact

• Security goals: Bob never learns p, and ideally Alice never learns s

pwd p
salt s
verifier v

PAKE
login phase

key k k or error

Building block: Oblivious pseudorandom function

• Let’s take a step back, address a different-looking question

• Alice has a key, Bob has a message

• Can we compute a block cipher on this key + message without sharing the key?

• Turns out the answer is yes!

AES key k AES input x

AES output y = BK(x)

Why an Oblivious PRF might help

pbkdf2(string password, string salt, int count):

 string key = ‘’

 U0 = S

 for(j = 1 to count):

 Uj = prf(password, Uj-1)

 key = key ⊕ Uj

 return key

pbkdf2(string password, string salt, int count):

 string key = ‘’

 U0 = S

 for(j = 1 to count):

 Uj = prf(password, Uj-1)

Constructing an Oblivious PRF (but not for AES)

• Bk(x) = H(x)k is pseudorandom when calculated over a group where discrete
logs are hard (e.g., modular arithmetic, elliptic curves)

• Note: it requires ~milliseconds to compute, rather than ~nanoseconds of AES

• The above protocol is an oblivious method to calculate B

• Hardness of discrete log prevents Bob from learning k from H(x)k

• Preimage-resistant hash function H prevents Alice from reversing z to learn x, 
if Bob chooses x at random (which might be okay in certain circumstances)

key k

input x

output y = H(x)k

z = H(x)

zk

R

Oblivious computing

• This algorithm is fundamentally different from everything we have seen
so far in this course: it protects sensitive data while computing, even
from the other people we are communicating with

• Will see many more examples of oblivious computing next week

• From Oblivious PRFs, can build many other useful crypto primitives

• One example: “blind signatures” in which Alice can sign a message
without knowing what she has just signed

• Cloudflare’s Privacy Pass: reduces CAPTCHAs when using Tor

• Anonymous e-cash

Secure Remote Password (SRP) protocol

We can obliviously compute the PAKE primitive directly!

pwd p salt s, verifier v = gH(p,s)

IDAlice, A = ga
choose a randomly

s, B = c v + gb
choose b randomly

u = H(A, B)
x = H(p, s)
S = [B - c gx](a + ux)
K = H(S)

ephemeral secret
“one time pads” v

public
constant

claim: shared key

u = H(A, B)
S = S = (Avu)b
K = H(S)

Claim: if Alice knows p, then Alice and Bob compute the same K 
(how can they test whether they have the same key?)

Question: How do we actually build hash functions?

• In January, we saw

• How to build block ciphers like AES

• How to build hash functions from a compression function

• But we never saw how to build a compression function; let’s rectify that

• Also, we will discuss a different technique to construct hash functions

Reminder: Merkle-Damgård paradigm

Build a variable-length input hash function from two primitives:

1. A fixed-length, compressing random-looking function

2. A mode of operation that iterates this function multiple times in a smart manner

IV for hash function is typically fixed in spec, not user

CIV

M1

C

M2

C

Mn

hash

…

✔

?

How do we build a compression function?

CHi - 1

Mi

Hi
BX

K

Y

Answer: use a block cipher?

1. Rabin’s Digitalized Signatures (1978)

Idea: form a hash function through iterated DES

Q: Is it okay to use a message in place of a block cipher's key?

A: In general, no! While messages have structure and may even be
adversarially-controlled, we have been assuming so far that keys are
totally unpredictable to the adversary. … But let’s go with this anyway.

Begin with some constant IV

Interpret message blocks as DES keys

2. Davies-Meyer

Deceptively compact picture

SHA-2’s compression function has a
Davies-Meyer design

Detailed math

H0 = some pre-defined constant
H1 = B(M1, H0) ⊕ H0
H2 = B(M2, H1) ⊕ H1  
 = B(M2, B(M1, H0) ⊕ H0) 
 ⊕ B(M1, H0) ⊕ H0
H3 = B(M3, H2) ⊕ H2 
 = B(M3, B(M2, B(M1, H0) ⊕ H0) 
 ⊕ B(M1, H0) ⊕ H0)  
 ⊕ B(M2, B(M1, H0) ⊕ H0)  
 ⊕ B(M1, H0) ⊕ H0
…and so on!

B

key

Hi - 1

Mi

Hi

SHA-3: quest for a Merkle-Damgard alternative

• 2004: Weakness found in Merkle-Damgard,
eventually would break SHA-1 in 2017

• 2007: Call for submissions

• 2008: 64 submissions received

• 2009-12: Three workshops, one before
each cutdown: 64 → 51 → 14 → 5 → 1

• Oct 2012: Keccak announced as winner,
created by Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche

• Aug 2015: NIST publishes Federal
Information Processing Standard (FIPS)
202 standardizing Keccak

NIST’s AES call

“Algorithms will be judged on the
extent to which their output is
indistinguishable from a random
permutation on the input block.”

NIST’s SHA-3 call

“The extent to which the algorithm
output is indistinguishable from a
random oracle.”

R

B$ Π

B$ Π-1 -1

Why NIST chose Keccak, in their words

1. “Offers acceptable performance in software, and 
excellent performance in hardware.”

2. “Has a large security margin, suggesting a good chance of surviving
without a practical attack during its working lifetime.”

3. “A fundamentally new and different algorithm that is entirely
unrelated to the SHA-2 algorithms.”

Sponge functions

r

c

Arbitrary input and output length

• More flexible than M-D hash functions

• Facilitates design of higher-level crypto

Split state into two components

• r = rate, which influences speed

• c = capacity, which influences security

