Lecture 18: (Password based) hashing, continued

» Lab 10 has been posted, due Wednesday 4/24 at 11pm
e Lab 11 will be posted Tuesday 4/23 and due Wednesday 5/1

 Reminder: my office hours have moved to Thursdays at 11am-1pm

Hash function = 1 public codebook

e Hash function H : {01}~ - {01}out
e Compresses long messages into short digests

e Most popular example in use today: SHA-256

\/
« Random oracle is an ideal public codebook .

e Concrete hash functions must provide:
* Preimage resistance
e Second preimage resistance

e Collision resistance

aba
abs
ace
act
add
ado
aft
age
ago
aha
ald

Z1p
Z00

Password-based key derivation function

 Threat we are trying to mitigate: a well-funded attacker who either

 Brute forces the (not too large) password space

« Obtains your personal phone or organization’s /etc/passwd file

e Mantra: generate key on the fly, don’t write it down anywhere

PBKDF2: Password — Cryptographic key

pbkdf2(string password, string salt, int count):

{7

string key = simplified version with
output length == 1 block

Up = S

for(j = 1 to count): «

U; = prf(password, Uj-1) \\\\\\\\

use any block _— long runtime,
cipher or MAC I<ey _ I<ey @ Uj ~_and steps are sequential

return key

Why output a crypto key?

 We could have simply built a function that maps password — boolean
that indicates whether the password is correct or not

e But shared knowledge of a cryptographic key allows you to perform
future crypto operations, such as protecting customers’ data on your
site so only the legitimate client can decrypt it later

* 1-bit checks of claimed_pwd == stored_pwd are more vulnerable: there
exist side channels to learn or even directly flip this boolean value

Offline vs online dictionary attack

« PBKDF2 Is vulnerable to an offline dictionary attack in which Mallory:

« Compromises the target device to learn salt, count, pbkdf2(pwd, salt, count)
e Guesses many passwords on her own computing cluster, perhaps in parallel

 Makes only 1 password guess on the target device

* Online dictionary attack requires
Mallory to check guesses with server

e Opportunity for rate limiting

Password dilemma

@ database of H(p),

or H(p)? 5
P (p) s o2 where H = pbkdf2, etc

password p

Alice wants to authenticate to bob.com. Does she send p or H(p)?

o If Alice sends H(p), then the stored hashed database is very sensitive

o If Alice sends p, then the transmission itself is very sensitive (<~ done in practice)

http://bob.com

“Cryptography is how people get things done when they
need one another, don't fully trust one another, and have
adversaries actively trying to screw things up.”

-Ben Adida

Source: benlog.com/2018/01/07/crypto-as-in-crypto/

Objective: verify passwords without seeing them!

. salts

wd B .
PWa p 3 27 verifierv

* Alice knows a password p but
doesn’t want to share it with

anyone, even bob.com KrebsonSecurity - A

In-depth security news and investigation N

21 Facebook Stored Hundreds of Millions of User

* If bob.com never sees the Passwords in Plain Text for Years

password then he cannot
. . Hundreds of millions of Facebook users had their account passwords stored in plain text
dCCli d e nta lly Sto Fe It and searchable by thousands of Facebook employees — in some cases going back to 2012,

KrebsOnSecurity has learned. Facebook says an ongoing investigation has so far found no

indication that employees have abused access to this data.

Password authenticated key exchange (PAKE)

salt s

pwd p verifier v /\\
-_— PAKE
<_

key R k or error

e Signup phase: real Alice registers a password p, gives verification string
v that Bob can use to detect If he’s talking to someone who knows p

e Login phase: the parties interact, after which
o If Bob Is speaking to the real Alice with password p — they get a shared key R

e |f Bob Is speaking to Mallory who doesn't know p — he learns this fact

e Security goals: Bob never learns p, and ideally Alice never learns s

Building block: Oblivious pseudorandom function

AES key R— 4 m < AESinputx

_, > AES output V= BK(X)

e Let’s take a step back, address a different-looking question

e Alice has a key, Bob has a message

 Can we compute a block cipher on this key + message without sharing the key?

* Turns out the answer Is yes!

Why an Oblivious PRF might help

pbkdf2(string password, string salt, int count):
string key = *’

Up = S

for(j = 1 to count):
U; = prf(password, Uj-1)

key = key @& U;

return key

Constructing an Oblivious PRF (but not for AES)

<+<—nput x

— output y = H(x)~x

e Br(x) = H(x)k is pseudorandom when calculated over a group where discrete
logs are hard (e.g., modular arithmetic, elliptic curves)

* Note: It requires ~milliseconds to compute, rather than ~nanoseconds of AES

 The above protocol i1s an oblivious method to calculate B

» Hardness of discrete log prevents Bob from learning k from H(x)~

» Preimage-resistant hash function H prevents Alice from reversing z to learn x, v
if Bob chooses x at random (which might be okay in certain circumstances) I

Oblivious computing

e This algorithm 1s fundamentally different from everything we have seen
so far in this course: it protects sensitive data while computing, even
from the other people we are communicating with

« Will see many more examples of oblivious computing next week
 From Oblivious PRFs, can build many other useful crypto primitives

e One example: “blind signatures” in which Alice can sign a message
without knowing what she has just signed

e Cloudflare’s Privacy Pass: reduces CAPTCHAs when using Tor

e Anonymous e-cash

Secure Remote Password (SRP) protocol

We can obliviously compute the PAKE primitive directly!

pwd p salt s, verifier v = gH(p;s)

|DAlice, A = ga /j

choose a randomly ; — 2

S,B=CV+gb =

2\
-
' _' “ _ * '
, »
' / j .
-~

public ephemeral secret
constant “one time pads” v

U = g =
X = H(p, S) S =
S — [B -C x](a + UX) K = (S)
K = H(S)q\g - __~claim: shared key ._/

Claim: if Alice knows p, then Alice and Bob compute the same K
(how can they test whether they have the same key?)

Question: How do we actually build hash functions?

e [n January, we saw
 How to build block ciphers like AES

 How to build hash functions from a compression function
e But we never saw how to build a compression function; let’s rectify that

» Also, we will discuss a different technique to construct hash functions

Reminder: Merkle-Damgard paradigm

Build a variable-length input hash function from two primitives:

? 1. Afixed-length, compressing random-looking function

v' 2. A mode of operation that iterates this function multiple times in a smart manner

M, M, M,

|_> |—> coo |—>
IV C C C » hash

i

\ IV for hash function is typically fixed in spec, not user

How do we build a compression function?

M, K

- H. X—s B .y

Answer: use a block cipher?

1. Rabin’s Digitalized Signatures (1978)

ldea: form a hash function through 1terated DES
r» Begin with some constant IV

H(M) — DESIZM (DESlilg_] (" (DES”‘,] (hO)) "))
| | |

Interpret message blocks as DES keys

Q: Is It okay to use a message In place of a block cipher's key?

A: In general, no! While messages have structure and may even be
adversarially-controlled, we have been assuming so far that keys are
totally unpredictable to the adversary. ... But let's go with this anyway.

2. Davies-Meyer

Deceptively compact picture Detailed math

M, HO = some pre-defined constant
H1 = B(M1, HO) ® HO

ey H2 = B(M2, H1) ® H1
v - B(M2, B(M1, HO) ® HO)
Hi..—— B -—(P»H,- ® B(M1, HO) ® HO

H3 = B(M3, H2) ® H2

= B(M3, B(M2, B(M1, HO) ® HO)
SHA-2's compression function has a ® B(M1, HO) ® HO)
Davies-Meyer design ® B(M2, B(M1, HO) @ HO)
® B(M1, HO) ® HO

...and so on!

SHA-3: quest for a Merkle-Damgard alternative

e 2004: Weakness found in Merkle-Damgard,
eventually would break SHA-1 In 2017

e 2007: Call for submissions
e 2008: 64 submissions received

e 2009-12: Three workshops, one before
each cutdown: 64 - 51> 14 > 5 > 1

e Oct 2012: Keccak announced as winner,
created by Guido Bertoni, Joan Daemen,
Michael Peeters, and Gilles Van Assche

e Aug 2015: NIST publishes Federal
Information Processing Standard (FIPS)
202 standardizing Keccak

NIST's AES call NIST’s SHA-3 call
“Algorithms will be judged on the “The extent to which the algorithm
extent to which their output is output is indistinguishable from a
Indistinguishable from a random random oracle.”

permutation on the input block.”

Ayn

e

Why NIST chose Keccak, in their words

1. “Offers acceptable performance In software, and
excellent performance in hardware.”

2. “Has a large security margin, suggesting a good chance of surviving
without a practical attack during its working lifetime.”

3. “Afundamentally new and different algorithm that is entirely
unrelated to the SHA-2 algorithms.”

Sponge functions

Var.-length input
e

ﬁ

P

Variable-len gth output

absorbmg - squeezing

Split state into two components
 r =rate, which influences speed

 C = capacity, which influences security

Arbitrary input and output length
« More flexible than M-D hash functions

 Facilitates design of higher-level crypto

