Lecture 19: Cryptanalysis

- Lab 10 is due Wednesday 4/24 at 11pm
- Lab 11 will be posted soon, due Wednesday 5/1
- Online course evaluation is live

SHA-3: quest for a Merkle-Damgard alternative

- 2004: Weakness found in Merkle-Damgard, eventually would break SHA-1 in 2017
- 2007: Call for submissions
- 2008: 64 submissions received
- 2009-12: Three workshops, one before each cutdown: $64 \rightarrow 51 \rightarrow 14 \rightarrow 5 \rightarrow 1$
- Oct 2012: Keccak announced as winner, created by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche
- Aug 2015: NIST publishes Federal Information Processing Standard (FIPS)
 202 standardizing Keccak

Why NIST chose Keccak, in their words

- 1. "Offers acceptable performance in software, and excellent performance in hardware."
- 2. "Has a *large security margin*, suggesting a good chance of surviving without a practical attack during its working lifetime."
- 3. "A fundamentally new and different algorithm that is entirely unrelated to the SHA-2 algorithms."

Block cipher operation

Block cipher internals

Hashing use case: Davies-Meyer compression function

The result: the sponge construction

- f: a b-bit permutation with b = r + c
 - efficiency: processes *r* bits per call to *f*
 - \blacksquare security: provably resists generic attacks up to $2^{c/2}$
- Flexibility in trading rate r for capacity c or vice versa

Regular hashing

- Electronic signatures
- Data integrity (shaXsum ...)
- Data identifier (Git, online anti-virus, peer-2-peer ...)

Salted hashing

- Randomized hashing (RSASSA-PSS)
- Password storage and verification (Kerberos, /etc/shadow)

Salted hashing

- Randomized hashing (RSASSA-PSS)
- Password storage and verification (Kerberos, /etc/shadow)
 - ...Can be as slow as you like it!

Message authentication codes

- As a message authentication code
- Simpler than HMAC [FIPS 198]
 - Required for SHA-1, SHA-2 due to length extension property
 - No longer needed for sponge

Stream encryption

- As a stream cipher
 - Long output stream per IV: similar to OFB mode
 - Short output stream per IV: similar to counter mode

Single pass authenticated encryption

- Authentication and encryption in a single pass!
- Secure messaging (SSL/TLS, SSH, IPSEC ...)

Reseedable pseudorandom sequence generator

- Defined in [Keccak Team, CHES 2010] and [Keccak Team, SAC 2011]
- Support for forward secrecy by forgetting in duplex:

Designing the permutation Keccak-f

Our mission

To design a permutation called KECCAK-f that cannot be distinguished from a random permutation.

- Like a block cipher
 - sequence of identical rounds
 - round function that is nonlinear and has good diffusion
- ...but not quite
 - no need for key schedule
 - round constants instead of round keys
 - inverse permutation need not be efficient

KECCAK

- Instantiation of a sponge function
- the permutation Keccak-f
 - **7** permutations: $b \in \{25, 50, 100, 200, 400, 800, 1600\}$

- SHA-3 instance: r = 1088 and c = 512
 - permutation width: 1600
 - security strength 256: post-quantum sufficient
- Lightweight instance: r = 40 and c = 160
 - permutation width: 200
 - security strength 80: same as SHA-1

state

Keccak-f: the permutations in Keccak

Operates on 3D state:

- \blacksquare (5 \times 5)-bit slices
- 2^ℓ-bit lanes

- Round function *R* with 5 steps:
 - θ : mixing layer
 - ρ : bit transposition
 - \blacksquare π : bit transposition
 - \mathbf{z} \mathbf{x} : non-linear layer
 - *ι*: round constants
- # rounds: $12 + 2\ell$ for $b = 2^{\ell}25$
 - \blacksquare 12 rounds in Keccak-f[25]
 - \blacksquare 24 rounds in Keccak-f[1600]

χ , the nonlinear mapping in Keccak-f

- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Algebraic degree 2, inverse has degree 3
- LC/DC propagation properties easy to describe and analyze

Cryptology

Cryptography

Cryptanalysis

Physics of implementation

Math of algorithm

Refresher: block ciphers

Design goals

- Simple
- Makes no sense
- Simple to see why it makes no sense

Security goal: pseudorandomness

- B_K looks like a truly random function, aka Mallory cannot tell them apart
- Sanity check: what class of functions definitely isn't pseudorandom?

Refresher: block cipher design

Key alternation,

over several rounds,

each w/ substitution & permutation

Question: what if S is 'too linear'?

Key alternation,

over several rounds,

each w/ substitution & permutation

Question: what if S is 'too linear'?

Form of the S-box

- 1. A linear function on all N bits
- 2. Linear 'most of the time'
- 3. The 1st bit of output is a linear function of the 1st bit of input
- 4. Some subset of the output bits is linearly correlated with some subset of input bits
- 5. The difference in two S-box values is connected by a linear function

How to break the cipher

- 1. Solve a system of linear equations
- 2. Solve linear programming problem
- 3. Same as #1 (partial breaks count too)
- 4. Consider more correlations...

5. This is the derivative of the previous questions (in the calculus sense)

Refresher: Claude Shannon's 2 goals for block ciphers

Confusion

- Uncertain $K \rightarrow can't$ correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

Question: what if S is 'too linear'?

Confusion

- Uncertain $K \rightarrow can't$ correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Linear cryptanalysis

Exploits the fact that S may behave 'similarly' to a linear function

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

Differential cryptanalysis

Exploits the fact that differences in inputs + outputs may be correlated

Question: what if S is 'too linear'?

Confusion

- Uncertain $K \rightarrow can't$ correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Linear cryptanalysis

Exploits the fact that S may behave 'similarly' to a linear function

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

Differential cryptanalysis (our focus)

Exploits the fact that differences in inputs + outputs may be correlated

Cryptanalysis of AES: Wide trail strategy through 4 rounds

- Picture depicts 4 rounds of AES
 - ≥ 25 active S-boxes in 4 rounds
 - Each has max diff propagation of 2-6
- So Pr [four-round trail] ≈ 2⁻¹⁵⁰
 - An 8-round trail has C < 2⁻³⁰⁰
 - A 12-round trail has C < 2⁻⁴⁵⁰
- Brute force search is better

"Instead of spending most of its resources on large S-boxes, the wide trail strategy aims at designing the round transformations such that there are no [linear or differential] trails/characteristics of low weight"

Bounds for differential trails in KECCAK-f[1600]

Rounds	Lower bound		Best known	
1	2		2	
2	8		8	
3	32	[Keccak team]	32	[Duc et al.]
4			134	[Keccak team]
5			510	[Naya-Plasencia et al.]
6	74	[Keccak team]	1360	[KECCAK team]
24	296		???	