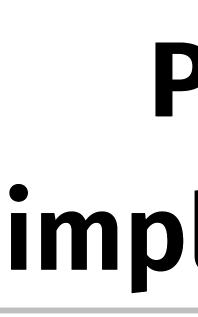
Lecture 20: Protecting data while computing

- Lab 11 will be posted soon, due Wednesday 5/1
- Online course evaluation is live
- Final exam

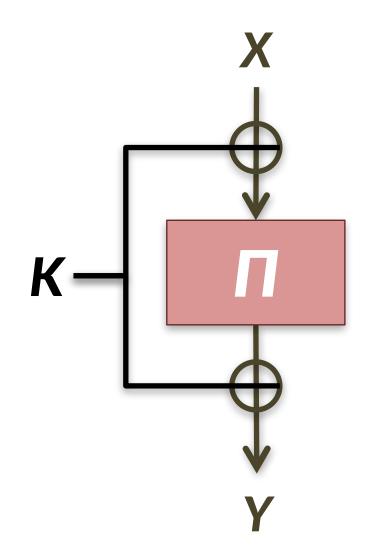

 - Format: similar to the midterm
 - Sample exam: will post on Piazza soon

• Scope: all topics covered in lectures, recitations, and labs (except law/policy)

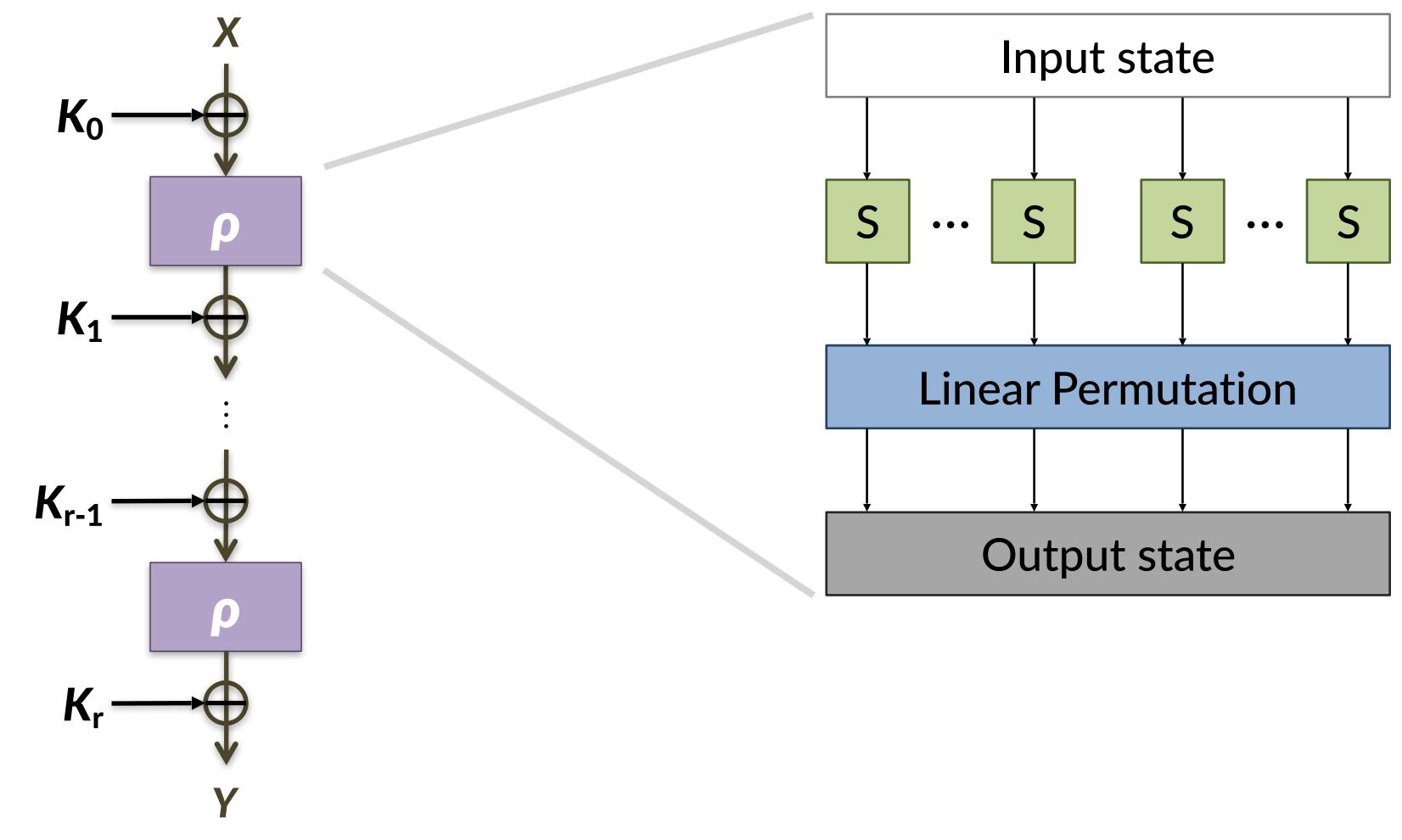
• Review session: respond to Piazza poll by Saturday 4/27 with your availability

Cryptography

Cryptanalysis


Physics of implementation

Math of algorithm



Refresher: block cipher design

Key alternation,

over several rounds, each w/ substitution & permutation

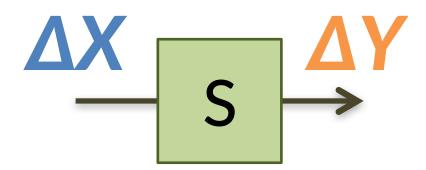
Question: what if S is 'too linear'?

Confusion

- Uncertain $K \rightarrow can't$ correlate X, Y
- Ideal: Prob[correlation] so small that attacker prefers a brute force attack

Linear cryptanalysis

Exploits the fact that S may behave 'similarly' to a linear function

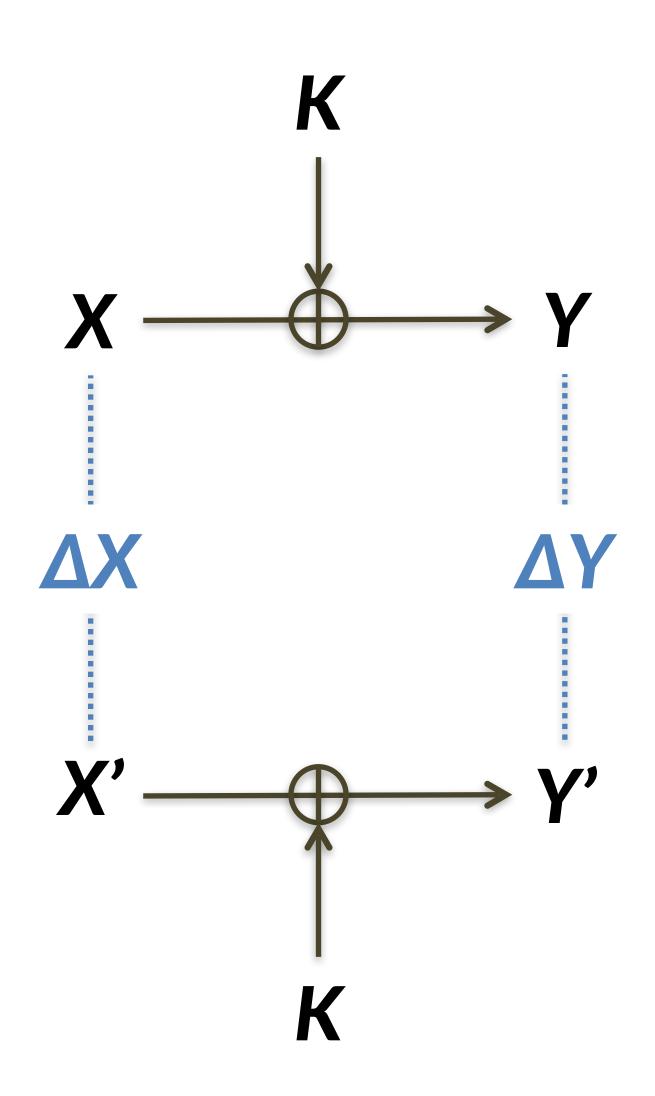

$$\begin{array}{c} X \\ - \\ S \end{array} \xrightarrow{} \end{array}$$

Diffusion

- 1 bit $\Delta X \rightarrow huge \Delta Y$
- Ideal: each output bit depends on all input bits (2 rounds in AES)

<u>Differential cryptanalysis</u> (our focus)

Exploits the fact that *differences* in inputs + outputs may be correlated


Our first differential cryptanalysis

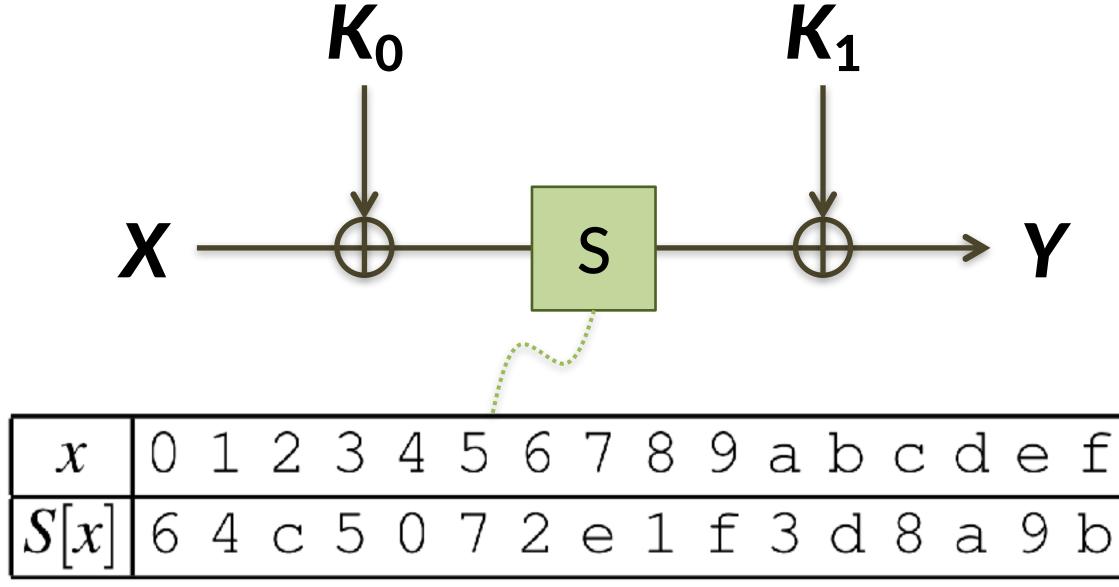
Consider a one-time pad

- Claude Shannon (and others) showed that it is 'perfectly hiding'
- Concretely: if you don't know K, then it is impossible to correlate X and Y

What about a two-time pad?

- Suppose attacker has two X/Y pairs
- Confusion disappears!
- Concretely: even without knowing K, we can say for sure that $\Delta X = \Delta Y$
 - $-\Delta X = X \oplus X'$
 - $-\Delta Y = Y \oplus Y'$

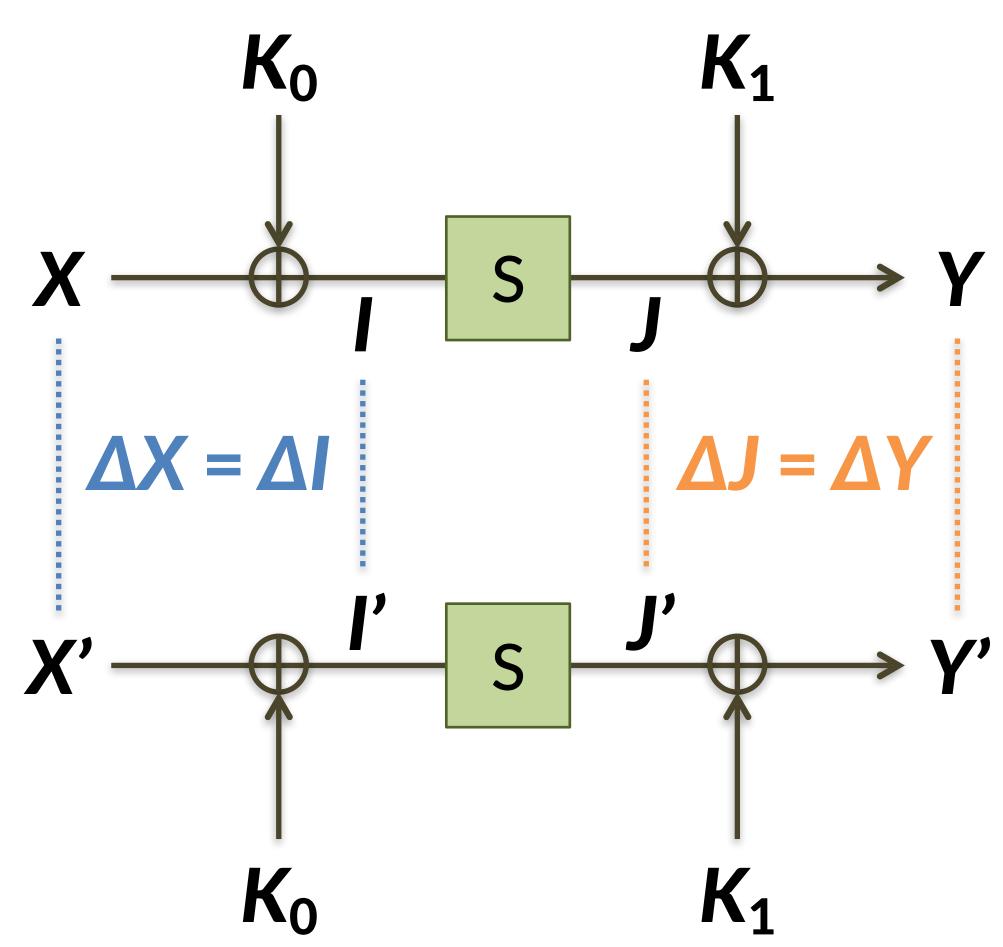
The TOY cipher


TOY cipher design = an S-box sandwiched by one-time pads

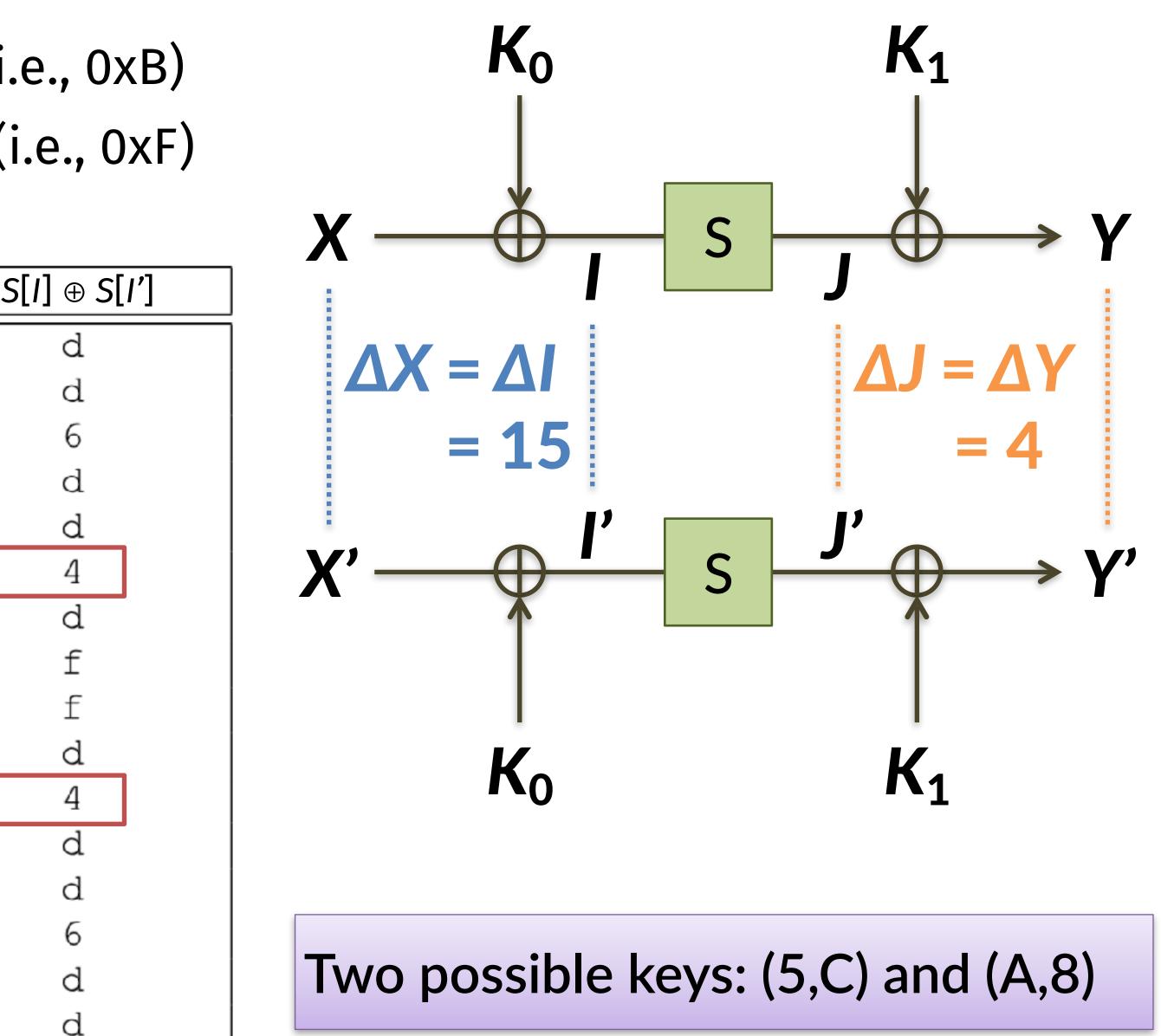
Concrete sizes

- 4-bit input X and output Y
- 8-bit total key
- S-box has 2⁴ = 16 total inputs/outputs

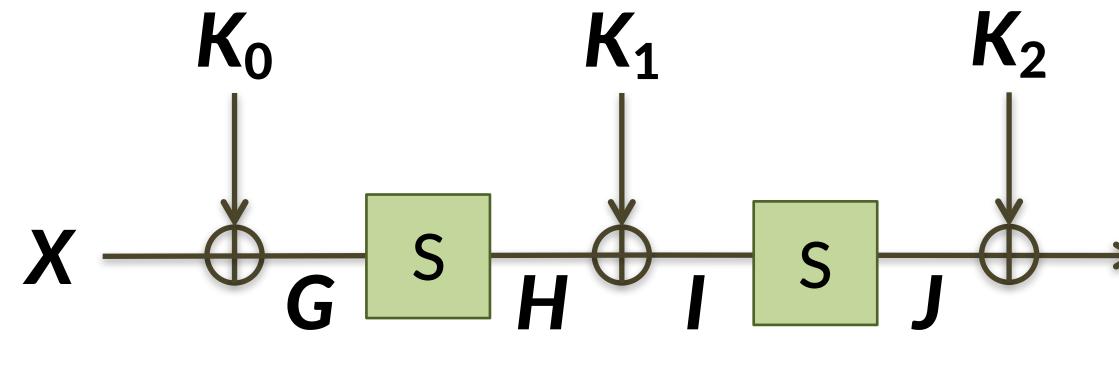
Hope: cannot break TOY faster than a brute-force search of 2⁸ = 256 keys


Sadly, this hope is false

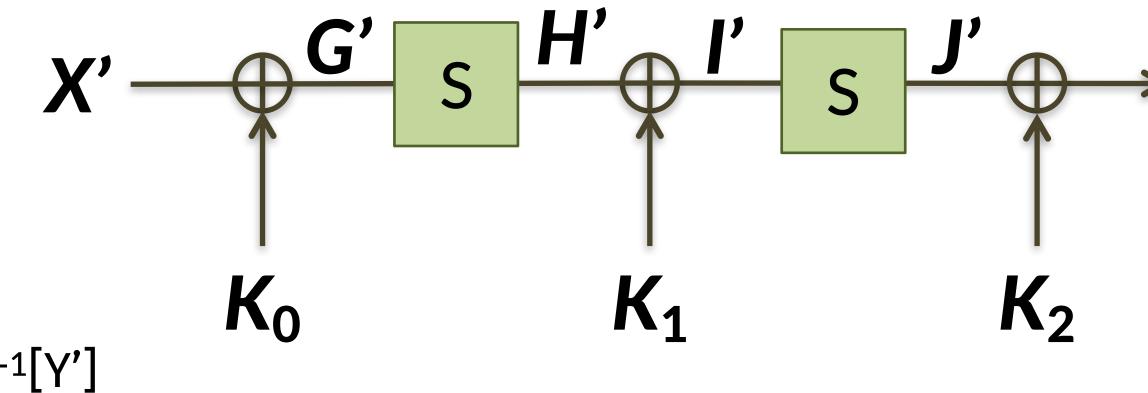
Differential cryptanalysis of TOY


- Consider two input/output pairs
- What do we know about differences?
- $\Delta X = \Delta I$ and $\Delta J = \Delta Y$, indep of key
- This doesn't directly relate ΔX and ΔY... but, at least we learned that it suffices to connect ΔI with ΔJ
- Remember: $\Delta J = J \oplus J' = S[I] \oplus S[I']$
- New plan: try all pairs I, I' that differ by △I, see which yields a difference of △J on the other side of the S-box

Concrete example

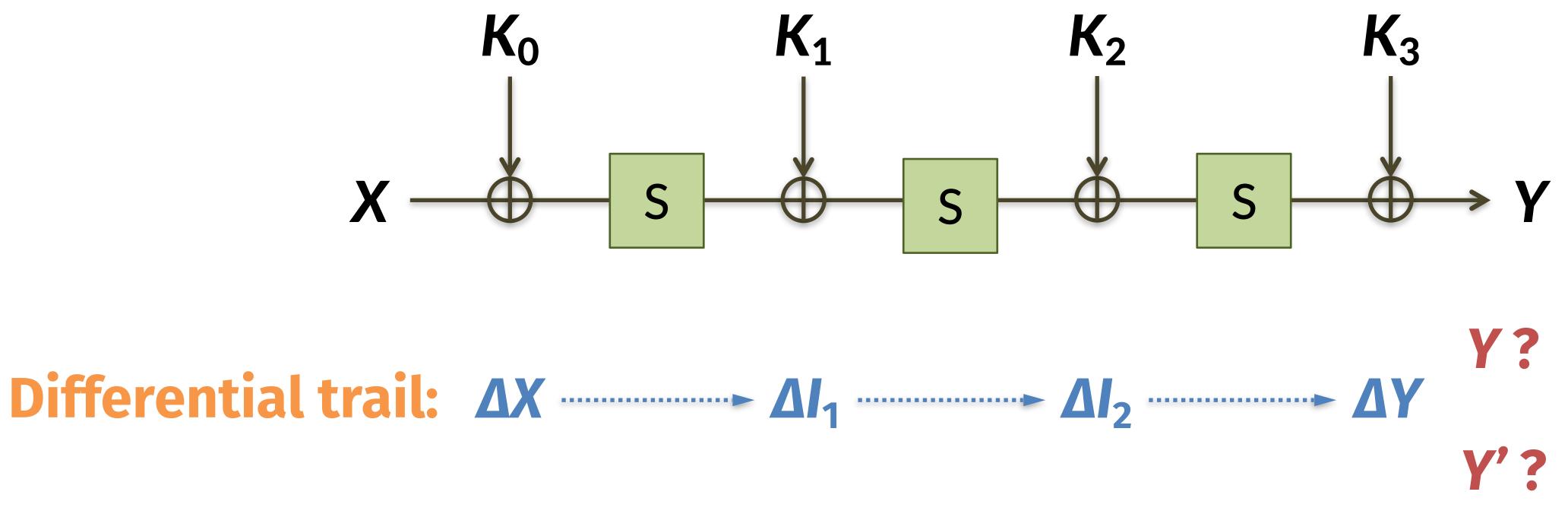

- Input X = 0 maps to output Y = 11 (i.e., 0xB)
- Input X' = 15 maps to output Y' = 15 (i.e., 0xF)

) = 1	, '	S[I]	S[I']	S
	0	f	6	b	
	1	e	4	9	
	2	d	С	a	
	3	С	5	8	
	4	b	0	d	
	5	a	7	3	
	6	9	2	f	
	7	8	e	1	
	8	7	1	е	
	9	6	f	2	
	а	5	3	7	
	b	4	d	0	
	С	3	8	5	
	d	2	a	C	
	е	1	9	4	
	f	0	b	6	

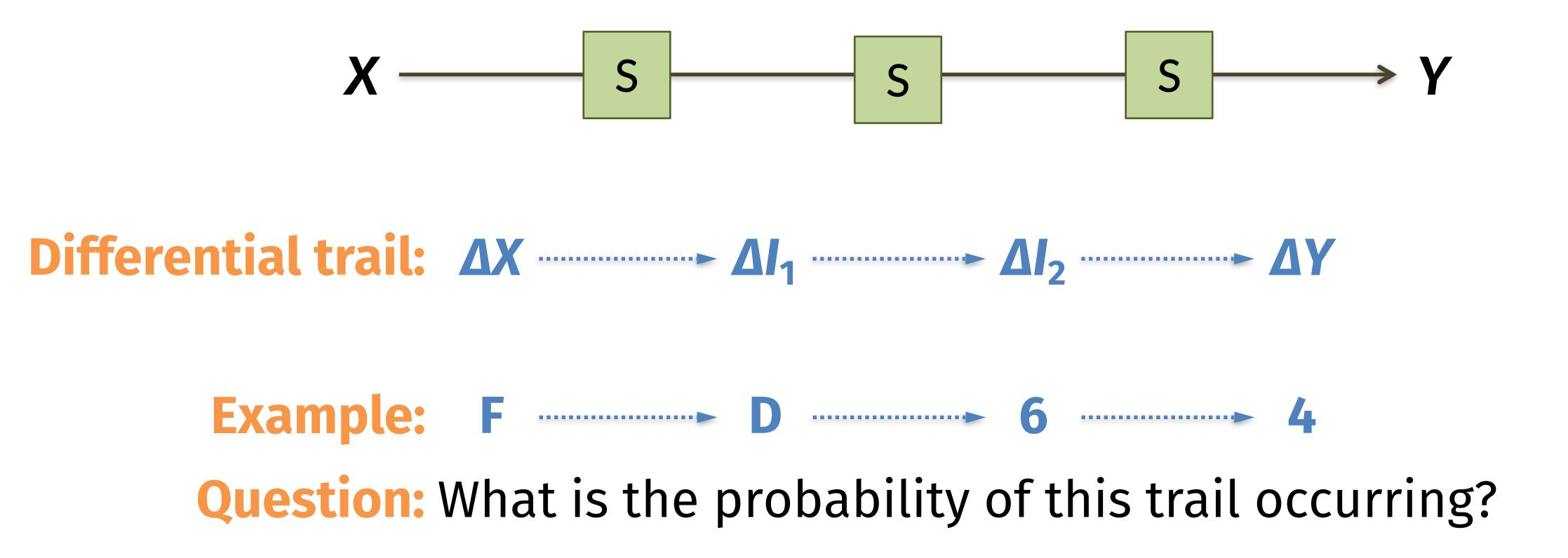


Differential cryptanalysis of 2TOY

- Main rule of cipher design: if the cipher breaks, simply add more rounds
- Now we don't know all differences
- But if we did know $\Delta H = \Delta I$ then we would be back to TOY's analysis
- Let's see if we can fake it!
 - Suppose $\Delta X = 0xF$ just as before
 - Then $\Delta I = 0$ xD with prob 10/16
 - Simply assume that's the case, and conduct the TOY cryptanalysis attack
 - Find values of K_2 consistent with $\Delta I = S^{-1}[Y] + S^{-1}[Y']$
- If Pr[guess] is high enough, then will often get the right answer

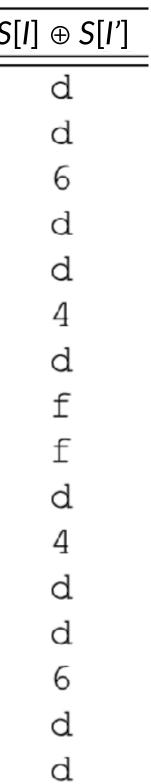


Differential trails through 3TOY



Two central themes of differential cryptanalysis

- Internal variables might depend on the key, but *differences* between them may not! 1.
- Narrow key space by testing when (parts of) 2. the key are consistent with known Δs


Differential trails through 3TOY

Difference propagation table

Output difference

							- P ·																				
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f	Table is based on S-box alone									
	0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-										
	1	-	- 6	2	-	2	_	_	2	_	4	_	Try all inputs differing by row value, see how														
	2	-	6	6	-	_	-	-	_	-	2	2	_	-	_	-	_	often their outputs differ by column value									
	3	-	_	_	6	_	2	_	_	2	_	_	_	4													
nce	4					_												' [S[I] [I'] [S[I']]									
	5					4												0 f 6 b									
ere	6	_		$\frac{-}{2}$		4												1 e 4 9 2 d c a									
ffe	7	_		-		-				-	-	$\frac{2}{2}$	$\frac{2}{2}$	_	_	_	_	3 C 5 8									
0	, Q					_	•	•		4 4 - 2 - 2	4 b 0 d																
put	0					-	_											5 a 7 3 6 9 2 f									
																		7 8 e 1									
	а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-	8 7 1 e									
	b	-	-	-	2	2	-	2	2	2	-	-	4	-	_	2	-	9 6 f 2									
	C	-	1		2		2			2						6		a 5 3 7									
																		b 4 d 0									
	d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4	c 3 8 5									
	P	-	2	_	Δ	2	_	_	_	_	_	2	-	-	_	_	6	d 2 a c									
																		e 1 9 4									
	f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2	f 0 b 6									
		-																									

Difference propagation table

Output difference

						Vu	LPU											
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f	Table is based on S-box alone
	0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-	Try all inputs differing by row value, see how
	2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-	often their outputs differ by column value
	3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-	Computing Dr[trail]
G	4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-	Computing Pr[trail]
en	5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-	Look up probability of each link, and
er	6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-	
Ĩ.	7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-	
td	8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2	$\Pr[F \rightarrow D \rightarrow 6 \rightarrow 4]$
nd	9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2	\approx Pr[F → D] · Pr[D → 6] · Pr[6 → 4]
	а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-	
	b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-	= 10/16 · 2/16 · 4/16 = 5/64
	С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-	(Actually, the probabilities are not
	d	-	-	-	-	-	- (2	2	-	-	-	-	6	2	-	4	independent, whoops. But it tends to yield
	е	-	2	-	4	2	-	-	-	_	******	2	****	-	-	-	6	a value close to the right answer.)
	f	-	-	-	-	2	-	2	-	-	-	-	-	- (10) -	2	

Difference propagation table

e f

2

2

6

Output difference

		0	1			Λ							h	C	2
													D	C	u
	0	16	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	-	-	6	-	-	-	-	2	-	2	-	-	2	-
	2	-	6	6	-	-	-	-	-	-	2	2	-	-	-
	3	-	-	-	6	-	2	-	-	2	-	-	-	4	-
U U	4	-	-	-	2	-	2	4	-	-	2	2	2	-	-
BD	5	-	2	2	-	4	-	-	4	2	-	-	2	-	-
er	6	-	-	2	-	4	-	-	2	2	-	2	2	2	-
Ē	7	-	-	-	-	-	4	4	-	2	2	2	2	-	-
	8	-	-	-	_	_	2	-	2	4	_	_	4	_	2
bu	9	- - -	2	-	-	-	2	2	2	-	4	2	-	-	-
	а	-	-	-	-	2	2	-	-	-	4	4	-	2	2
	b	-	-	-	2	2	-	2	2	2	-	-	4	-	-
	С	-	4	-	2	-	2	-	-	2	-	-	-	-	-
	a	-	-	-	-	-	-	2	2	-	-	-	-	0	2
	е	-	2	-	4	2	-	-	-	-	-	2	-	-	-
	f	-	-	-	-	2	-	2	-	-	-	-	-	- (10

Def. Max difference propagation

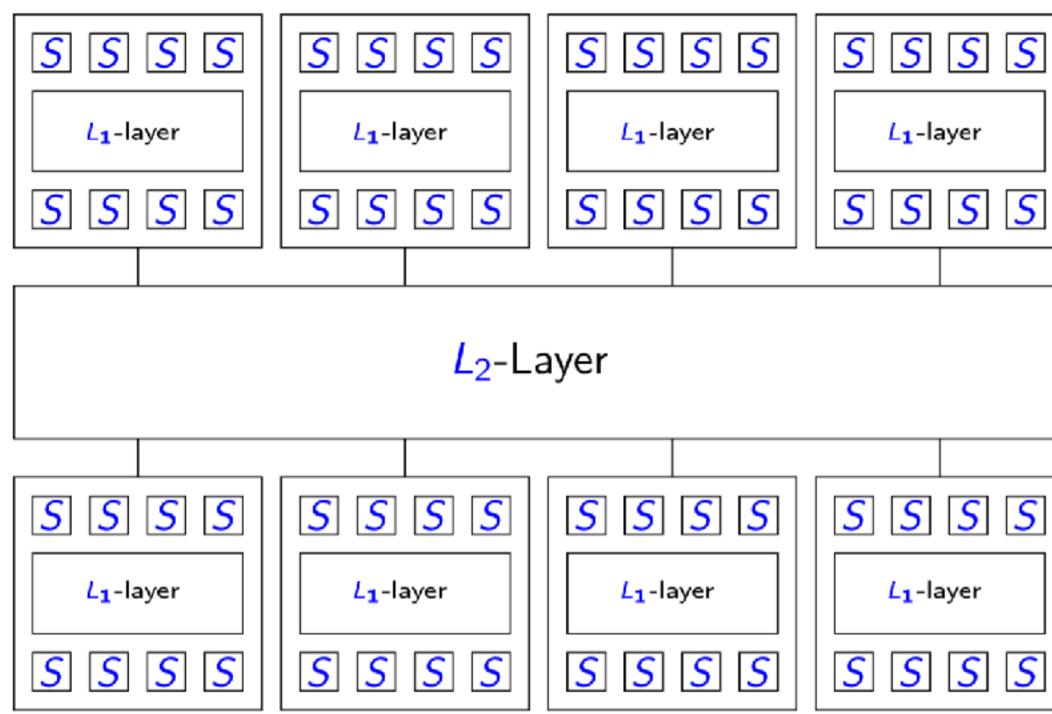
Largest one-round difference propagation in the entire table

Max difference propagation in the AES S-box

```
aesS = mq.SR(10,4,4,8,True).sbox()
```

```
def print_biases(Sbox):
print "linear bias:", Sbox.maximal_linear_bias_absolute(), "out of", 2^(len(Sbox)-1)
```

print_biases(aesS)


difference propagation: 4 out of 256 linear bias: 16 out of 128

print "difference propagation:", Sbox.maximal_difference_probability_absolute(), "out of", 2^len(Sbox)

Cryptanalysis of AES: Wide trail strategy through 4 rounds

- Picture depicts 4 rounds of AES
 - \geq 25 active S-boxes in 4 rounds
 - Each has max diff propagation of 2⁻⁶
- So Pr [four-round trail] ≈ 2⁻¹⁵⁰
 - An 8-round trail has C < 2⁻³⁰⁰
 - A 12-round trail has C < 2⁻⁴⁵⁰
- Brute force search is better

"Instead of spending most of its resources on large S-boxes, the wide trail strategy aims at designing the round transformations such that there are no [linear or differential] trails/characteristics of low weight"

Bounds for differential trails in KECCAK-f[1600]

Rounds	Low	er bound	Best	known
1	2		2	
2	8		8	
3	32	[KECCAK team]	32	[Duc et al.]
4			134	[Кессак team]
5			510	[Naya-Plasencia et al.]
6	74	[KECCAK team]	1360	[Кессак team]
24	296		???	

Slide from Keccak team

New topic: Protecting data while computing

- We saw our first example of protecting data while computing last week, when we built an "Oblivious PRF" as a building block toward PAKE
 - Punchline: Alice and Bob worked together even while they viewed each other as 'adversaries' trying to learn their sensitive input data
- Now let's protect our sensitive data even while performing an *arbitrary* calculation over our joint inputs
- Credit: the slides in this portion of the lecture were created by Mike Rosulek at Oregon State (web.engr.oregonstate.edu/~rosulekm/crypto)