Lecture 22: Protected databases, randomness

* Final exam is Saturday, May 11 at 3-5pm in PHO 211 (usual classroom)

» Review session for the final is Sat 5/4 at 3-5pm in MCS 180

e No office hours next week

» Please complete course evaluation at bu.campuslabs.com/courseeval
by Monday 5/6 (apparently this class has a low response rate so far)

 Have a good summer!

http://bu.campuslabs.com/courseeval

Secure computation

Premise:

> Mutually distrusting parties,
each with a private input

> Learn the result of
agreed-upon computation

» Ex: election, auction, etc.
Security guarantees:

> Privacy (“learn no more
than” prescribed output)

> Input independence
> Output consistency, etc..

.even if some parties cheat,
collude!

Slides by Mike Rosulek, OSU

Techniques for cryptographically secure computing

e Garbled circuits 1E+0

e Secret sharing

Throughput of AES enciphering (bytes/sec)

2011 2013 2015 2017

SUFFOLK

SIMMONS
COLLEGE

.

for Working Women

BOSTON
WAGE GAP

Becoming the Best City in America

, ,,,.. i
e
T,
Iy A 42 i 08 ¢—< .
ey ___
Yl ® LAk ta ot i . ﬂ"-
N EEE:E___ .

A

2013

L S
o £
7 B
-~
- \\
~~ »
-
-
” e
L - T
=
e S
b= -
AN
5 R
74 m« 4 2 Ot
® 720
2P 715
. - !
R ¢ "JLR
B3 23 AN
\! < 4
.p;,.“. N 5v
NSLHY

Cryptographically protected
data structures

Let’s protect a database vossible

Data owner

threats?

Database server

Backend storage
Analyst
‘l;;;L* o U

ﬂ

Encryption in transit vossible

Data owner

Database server

=
A
2k

Analyst

=

|]

<

A

Encryption at rest hossible
threats?

Data owner

Database server

Analyst (-\
Y ot
LA
A azze

=

Backend storage

[I

<

Encryption in use vossible
threats?

Data owner

Database server

Analyst (-\

H== =
J

Backend storage

\

]

[I

Encryption in use vossible

Data owner

Database server

Backend storage
Analyst

Desired goal: “garbled indexes” that permit the
server to search directly over encrypted records

e Server shouldn’t see either data or queries
e Server might observe access patterns though

Cryptographically protected database search

4 @ No server protections
(encrypt data at rest)

® Property preserving encryption

® Symmetric searchable encryption

Risk of data compromise

® Multi-party computation
® Return whole dataset encrypted

Utility of stored data

State of the art

4 @ No server protections
(encrypt data at rest)

Imbitglass @ca"#ﬁ“&a’o@ € cipherQuery

Microsoft*

@Crir?perCIoudﬁ |@lrypt ;%‘\ SQL Server

st in the Cloud™
’ - 2016

ﬁ Microsoft* ‘
Shljhigh E%EVEIL 2~ SQLAzure

S) 7ar0DB

Risk of data compromise

® Multi-party computation
® Return whole dataset encrypted

Utility of stored data

Abstract view of a single-table database

umm_

1 Alice Jones 71,000 <alice.)pg>

2 Bob Jones 25 58,000 <bob.jpg>

3 Charlie Smith 50 62,000 <charlie.jpg>
4 David Williams 55 75,000 <david.jpg>

Searchable ' ' Unsearchable
= =3

Small data structure: map Large file store: standard
searchable terms to authenticated encryption
assoclated record ids applied to each record

1. Property Preserving Encryption (PPE)

* Apply transformation that preserves relevant features

 Insert Into a legacy database for indexing & searching

EIMMM ummm

1 Alice Jones 71,000 glap | f4,P7 nr g71 190
2 Bob Jones 2> 55,000 |:> 2 7fBwo Lf4Pz duo gs8 res
3 Charlie Smith 50 62,000 AKXOk sw2AD Syv @62 122
4 David Williams 55 75,000 A CK6ZD 6lVTH tng g75 r38
Operation: DET (=) OPE (<) HOM (+, x)

Method: Choose Enc function at random Choose random monotonic function Public-key crypto
Drawback: Cloud sees equality patterns Cloud sees < and ~distances Slow

1. Property Preserving Encryption (PPE)

e Fast & legacy compliant

e Supported by a database near you!
e Google: Encrypted BigQuery
e Microsoft: SQL Server 2016, Azure SQL Database

e Startups: Bitglass, Ciphercloud, CipherQuery, Crypteron, 1Qrypt, Kryptonostic,
PreVeil, Skyhigh, ZeroDB

 Weakness: leakage provided to cloud is strong enough to permit data &
query reconstruction attacks

2. Searchable Symmetric Encryption (SSE)

e Privacy: reveals or “leaks” less information to the database server
e Query expressivity: large subset of SQL
e Scale: tested on databases with 100m records

e Performance: within 5x of MariaDB

SSE example (Blind Seer)

e Consider a tree In which each node stores a set

* Leaves: set of keywords in that record

fname = Alice
age = 20

fname = Bob
age = 25

V4
 Other nodes: union of children n=Alice, a=20,
n=Bob, a=25
e Roles v
e Data owner makes tree All keywords X
e Cloud server & client jointly n=Charlie, a=50,
n=David, a=55

traverse using garbled circuits

fname = Charlie
age = 50

e Consider the query name = Alice A age = 25

fname = David
age =355

* Imperfect security: tree search pattern reveals info about data

All database types can be protected with crypto

Structure Query basis Examples Strengths

Transactional support

Relational Set mathematics MySQL, Oracle, Postgres Standardized SQL interface

Key-value Associative arrays BigTable, Hbase, High insert rates
g Y> Accumulo Flexible data models
Graph Linear aleebra | BMSystem G, Natural data representation
i : GraphBLAS, Neo4 Amenable to graph algs

Transactional support
Array Linear algebra SciDB, TileDB High performance

Specialized to scientific computing

Google Spanner, Transactional support

NewSQL Set mathematics MemSQL, Spark High insert rate

Most SQL query types are supported by SSE

Type Description SQL Example
Equality fname = ‘Homer’
Shgrt Wildcard notes LIKE ‘%oo %o00!’
string
Substring notes LIKE ‘%mmm%’
~ Inequality age > 30
Numeric
Ranges age BETWEEN 38 and 42
Free-text keyword CONTAINED_IN(notes, ‘donut’)
Long text .
Stemming CONTAINS_STEM(notes, ‘work’)

Conjunction/disjunction lname = ‘Simpson’ AND city = ‘Springfield’
M_OF _N(2, 3, income > 40000, citizenship =
‘Yes Born_In US’, marital _status = ‘Married’)

Rankin M_OF_N(2, 3, income > 40000, citizenship =
g ‘Yes Born In US', marital status = ‘Married’) ORDER BY RANK

Information revealed by SSE

e Protected search schemes reveal or leak some information about the
query, data set, and result set to each party.

1. Structure: size of an object, e.g. length of a string or cardinality of a set
2. ldentifiers: pointers to objects that persist across multiple accesses

3. Equality or Order of values

e Some schemes leak:
1. At Initialization on entire DB

2. At Query on relevant records

Weekly reading: the Pareto Frontier of protected databases

Threats S leakage Scale Crypto Network
S O = o » =
2 g T s £ B|& & S|§
2 5 3§ 3 e 2 & f * g 5
> =¥ g‘j 5 o = O W 1=y = B = 2
= s 5 S|lw BB F T|lz & 2|8 %
< | Scheme (References) Approach | #+ < < | 5 o > = w |0 & <O | %+ A | Unique feature
Arx-EQ [14] Legacy 2 — © | O ™ ® v ¢ e & o (o ® | legacy compliant
Kamara-Papamanthou [106] Custom 2 — © O ™ e — — | @ O ® & & parallelizable
2 | Blind Storage [100] Custom 2 — © | O ™ ® Vv) ® ¢ ¢ O o low S work
— Sophos (Zog¢gog) [101] Custom 2 — © | O ™ ® VvV) O © @ ® ® Refresh w/ Insert
5— Stefanov et al [107] Custom 2 — © O ™ = v O E O O & ® Refresh w/ Insert
= vORAM+HIRB [120] Obliv 2 — © | O O ® v e | e O O | O O | history independ.
TWORAM [121] Obliv 2 — © O @ ® — — | C O O O ™ const round
3PC-ORAM [124] Obliv 3 O ©O | O O e v O™ | e O O[O O™ | duals
e~ | DET [15]. [92] Legacy 2 — © ' > d ' ® v @ @ O ¢) ® supports JOINs
,5_3 BLIND SEER [16], [17] Custom 3 ® ® | O O C v ® O O O O @™ | hide field, r;’s
= OSPIR-OXT [18]-[21], [104] Custom 3 B O | O O ® v & O ¢ C a7 ® excels w/ small r,
=S Kamara-Moataz [102] Custom 2 — © O O C — — | © O ® & ™ relational SPC
OPE [93]-[95] Legacy 2 — QO]| ® @ ® v @ & o ® ® ® leak some content
o Mutable OPE [97] Legacy 2 — © & @ $ v O & O O O O interactive
= Partual OPE [111] Custom 2 — © | O ® & v O & ® o O @ fast insertons
ce Arx-RANGE [110] Custom 2 — © O O & v O O @) O O non-interactive
S1soSPIR [22] Obliv 3 O O) O C v a ® @ ® O ™ split, non-colluding .
' GraphEnc, [116] Custom 2 — © O ™ & v O & & ® ® ™ approx. graph dist.
E GraphEncy [116] Custom 2 — © | 0 O C vV O | O @ @ | ® @ | approx. graph dist.
& | Chase-Shen [109], [126] Custom 2 — @10 O C vV ™| @€ @ @ | © @ | substring search
Moataz-Blass [123] Obliv 2 — © | C O & v & & O O O ™ substring scarch

Weekly reading: inference attacks from leaked information

Required Required attack Attack efficacy
S leakage conditions
Attacker goal Init | Query | Ability Prior Runtime | Sensitivity Keyword Attack name
to inject | knowledge 1) prior | universe
data knowledge tested
) O - ™ ® i O Communication Volume Attack [125]
4@& O) O O O O Binary Search Attack [127]
@00 & ™ — ™ ® ? O Access Pattern Attack [125]
C\% () ™ - A O ® ® Partially Known Documents [128]
0\?"-’ O ™ _ v | @ | © O & Hierarchical-Search Attack [127]
@ ™ — ® O ® & Count Attack [128]
& & ™ — ¢ ® ® ¢ Graph Matching Attack [129]
,Q*\‘@ = — - ¢ O ? O Frequency Analysis [130]
& o — v C O 7 ® Active Attacks [128]
(§Z> Y — — a7 ®) @® Known Document Attacks [128]
Q ® — I — I O | O O » Non-Crossing Attack [131]

TABLE Il
SUMMARY OF CURRENT LEAKAGE INFERENCE ATTACKS AGAINST PROTECTED SEARCH BASE QUERIES. .S IS THE SERVER AND THE ASSUMED ATTACKER FOR ALL ATTACKS LISTED.
S LEAKAGE SYMBOLS HAVE THE SAME MEANING AS IN TABLE II. EACH ATTACK IS RELEVANT TO SCHEMES IN TABLE Il WITH AT LEAST THE .S LEAKAGE SPECIFIED IN THIS
TABLE. SOME ATTACKS REQUIRE THE ATTACKER TO BE ABLE TO INJECT DATA BY HAVING THE PROVIDER INSERT IT INTO THE DATABASE. LEGENDS FOR THE REST OF THE
COLUMNS FOLLOW. IN ALL COLUMNS EXCEPT “KEYWORD UNIVERSE TESTED, BUBBLES THAT ARE MORE FILLED IN REPRESENT PROPERTIES THAT ARE BETTER FOR THE SCHEME
AND WORSE FOR THE ATTACKER.

PRIOR KNOWLEDGE RUNTIME (IN # OF KEYWORDS) SENSITIVITY TO PRIOR KNOWLEDGE KEYWORD UNIVERSE TESTED

@- CONTENTS OF FULL DATASET

@— CONTENTS OF A SUBSET OF DATASET @®- MORE THAN QUADRATIC ®- HIGH @®- > 1000
€ - DISTRIBUTIONAL KNOWLEDGE OF DATASET € - QUADRATIC O- Low ¢C- 500 TO 1000
(M— DISTRIBUTIONAL KNOWLEDGE OF QUERIES (O— LINEAR ? — UNTESTED O— < 500

(O— KEYWORD UNIVERSE

Random number generation

Randomness = Unpredictability = S

e
p— - i
\
\
\
—

ecrec

\

B

\

Effects of bad randomness

f d RUSSIANS ENGINEER) A forensic examination found that the generator had code that was installed after the machine
® I_Otte ry ra U Eﬁ&h&%BLLQ\IIN{“\)EIHE‘FE \(had been audited by a security firm that directed the generator not to produce random numbers
FIX . on three particular days of the year if two other conditions were met. Numbers on those days

would be drawn by an algorithm that Tipton could predict, lowa Division of Criminal Investigation
agent Don Smith wrote in an affidavit.

All six prizes linked to Tipton were drawn on either Nov. 23 or Dec. 29 between 2005 and 2011.

Investigators were able to recreate the draws and produce "the very same 'winning numbers'
from the program that was supposed to produce random numbers,” Smith wrote.

 Weak TLS keys on Debian
computers in 2006-2008 int getRondomNumber ()

{ return Y. // chosen by fair dice roll.
e Weak RSA keys // quaranteed to be random.

® .“and more Source: xkcd.com /221

Bug forum discussion, 2003

I'm using Valgrind to debug a program that
uses the OpenSSL libraries, and got
warnings about uninitialized data in the
function RSA_padding_add_PKCS1_type_2(),
on the line with "} while (*p =="\0');" (line
171 in version 0.9.7a). The following patch
ensures that the data iIs always modified,
something that the bytes() method
obviously fails to do.

—-— rand_lib.c Thu Jan 30 2003

++ rand lib.c Wed Feb 26 2003

Qd -154,6 +154,7 @

int RAND_bytes(unsigned char xbuf, int num)
{

[new code here]

Bad randomness in Debian

Debian security advisory, 2008

Luciano Bello discovered that the random
number generator in Debian's openssl
package is predictable. This is caused by an
Incorrect Deblan-specific change to the
openssl package. As a result, cryptographic
key material may be guessable. ...

It Is strongly recommended that all
cryptographic key material which has been
generated by OpenSSL versions starting
with 0.9.8¢c-1 on Debian systems Is recreated
from scratch. Furthermore, all DSA keys
ever used on affected Debian systems for
signing or authentication purposes should
be considered compromised.

Bad randomness in RSA key generation

Ron was wrong, Whit is right

Arjen K. Lenstra!, James P. Hughes?,

Maxime Augier', Joppe W. Bos!, Thorsten Kleinjung', and Christophe Wachter!
! EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 Self, Palo Alto, CA, USA

Abstract. We performed a sanity check of public keys collected on the web. Our main goal was
to test the validity of the assumption that different random choices are made each time keys are
generated. We found that the vast majority of public keys work as intended. A more disconcerting
finding is that two out of every one thousand RSA moduli that we collected offer no security.
Our conclusion is that the validity of the assumption is questionable and that generating keys
in the real world for “multiple-secrets” cryptosystems such as RSA is significantly riskier than
for “single-secret” ones such as ElGamal or (EC)DSA which are based on Diffie-Hellman.
Keywords: Sanity check, RSA, 99.8% security, ElGamal, DSA, ECDSA, (batch) factoring,
discrete logarithm, Fuclidean algorithm, seeding random number generators, Ky.

How you obtain randomness: /dev/urandom

Computer:~ Mayank$ cat /dev/urandom | head -c¢ 96 | xxd
00000000: |687d 6207
00000010: |7445 1cdé6
00000020: |a439 48bd
00000030: |a075 7722
00000040: [cc3b £f811
00000050: |7d26 cé6c5

How a computer generates randomness

Statistical tests to see
If entropy Is “sufficient”

A

Step 1: Harvest Step 2: Extract Step 3: Expand
Reliably produce a “pool” —™ Produce ~128 nearly — (Create a large sequence
of bits with true entropy uniform bits from the pool of pseudorandom bits

Security requirements of randomness generation

1. Performance: Be fast enough that people will use It

2. Hard fail: Only expand once the system has been
adequately seeded with true entropy

3. Resilience: Adversary can’t predict outputs, even Use multiple sources of
If she can partially influence the source of true ::> entropy, and combine
randomness them in a smart way

4. Forward + backward secrecy: Adversary cannot Re-seed the PRNG

predict past or future PRNG outputs even If she :> periodically with new
knows the current seed and state truly random numbers

Step 1: Harvest Step 2: Extract Step 3: Expand
Reliably produce a “pool” —* Produce ~128 nearly — (Create a large sequence
of bits with true entropy uniform bits from the pool of pseudorandom bits

“Fortunately, 1t’s not hard to harvest truly unpredictable
randomness by tapping the chaotic universe that surrounds
a computer's orderly, deterministic world of 1s and 0s.”

— |[EEE Spectrum

Step 1: Sources of entropy to harvest

e Physics: EM radiation, temperature (random.org/history)

http://random.org/history

Step 1: Sources of entropy to harvest

» Physics: EM radiation, temperature (random.org/history)

e Logical gates: Clock drift, thermal noise

Q

Apple’s Secure Enclave

Apart from the UID and GID, all other cryptographic keys are created by the system’s
random number generator (RNG) using an algorithm based on CTR_DRBG. System
entropy is generated from timing variations during boot, and additionally from
interrupt timing once the device has booted. Keys generated inside the Secure Enclave

use its true hardware random number generator based on multiple ring oscillators post
processed with CTR_DRBG.

http://random.org/history

Step 1: Sources of entropy to harvest

» Physics: EM radiation, temperature (random.org/history)

» Logical gates: Clock drift, thermal noise

e Quantumness: beam splitters & polarization, tunneling, entanglement

http://random.org/history

Step 1: Sources of entropy to harvest

 Physics: EM radiation, temperature (random.org/history)

» Logical gates: Clock drift, thermal noise

e Quantumness: beam splitters & polarization, tunneling, entanglement
 Human: keystroke timings, mouse movements, hard drive seek times

e Sensors: microphone, camera, gyroscope, Bluetooth/GPS/wifi signal

http://random.org/history

Step 3: Pseudorandom expansion

Statistical tests to see
If entropy is “sufficient”

7

Step 1: Harvest Step 2: Extract Step 3: Expand
Reliably produce a “pool” —™ Produce ~128 nearly ~— " Create a large sequence
of bits with true entropy uniform bits from the pool of pseudorandom bits

Step 3: NIST standards for DRBGs

» Use counter mode as a stream cipher (CTR_DBRG)

Synthetic, one

+ = W ,
time use key K

Nonce N

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

TR — — —— . — — —— —

Step 3: NIST standards for DRBGs

» Use counter mode as a stream cipher (CTR_DRBG)

« A MAC is pseudorandom (HMAC_DRBG) J—
: V|| 0x00 ||plmﬂci data

¥ provided data = Null

V -

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

—

vy

Step 3: NIST standards for DRBGs

» Use counter mode as a stream cipher (CTR_DRBG)

e A MAC is pseudorandom (HMAC_DRBG)

e Use a hash function (Hash DRBG)

Source: NIST Special Publication 800-90A

Recommendation for Random Number Generation
Using Deterministic Random Bit Generators

.....................................

Step 2: Extraction of uniform-looking bits

Statistical tests to see
If entropy Is “sufficient”

7

Step 1: Harvest
Reliably produce a “pool” =™
of bits with true entropy

Step 3: Expand
— (Create a large sequence
of pseudorandom bits

Hashing as an extractor?

e Let’s try to use a hash function H as an extractor (spoiler: it won’t work)

 Extractors operate on the principle that including more entropy sources can't hurt:
H(x,y,z) is at least as good a random number as H(x,y), no matter how awful z is

e |ssue: the entity that chooses z can strongly influence the resulting “random” number

1. Generate a random z
2. Try computing H(x,y,z)
3. If H(x,y,z) doesn't start with bits 0000, go back to step 1

4. Else, output this value of z

 Result: H(x,y,z) begins with four known bits of 0000, even if x and y were perfectly random

* Also, this attack is fast: it only takes 16 computations of H on average

Extraction is hard

Statistical tests to see
If entropy Is “sufficient”

7

Step 1: Harvest
Reliably produce a “pool” —™
of bits with true entropy

Step 3: Expand
— Create a large sequence
of pseudorandom bits

Goal: Secure communication in presence of adversary

oD key K key agreement oD key K

\encrxgt C=E(K, M) >

decrypt M= D(K, C)

message M

2?7

Modes of operation for authentication and/or encryption

Cryptographic doom principle

If you have to perform any crypto
operation before verifying the MAC on a
message you've received, it will somehow
Inevitably lead to doom!

— Moxie Marlinspike

Widespread use of good crypto: Auth Enc, SHA-2, ...

ECDHE-ECDSA-AES128-GCM-SHA256 Secure Connection

67%
The connection to this site is encrypted and

authenticated using a strong protocol (QUIC), a strong
key exchange (ECDHE RSA with X25519), and a strong
cipher|(AES_128_GCM)]

ECDHE- RSA-AE5128 SHA
‘_—-—-— T

SHA1, 8.3%

ECDHE-RSA-CHACHA20-POLY1305
4%

ECDHE-RSA-AES128-GCM-SHA256
14%

ECDHE-ECDSA-AES128-SHA
1%
ECDHE-ECDSA-CHACHA20-POLY1305
6%

SHA256, 91.7%

Crypto in TLS == really fast!

everything else
the server does

P256, 0.15%
x25519, 0.06%

Other, 98.20%

AES-GCM, 0.12%
HACHA20-POLY1305,
0.03%
AES-CBC, 0.03%
’ % SHA256, 0.05%
—_—

SHA1, 0.03%

" RSA, 0.89%

-
-
o~

e BoringSSL, 1.80%

glue, 0.44%

Divide-and-conquer = Side channels + cryptanalysis

This asre.emenf shall be in ettect

Foo'r"'Shooﬂng until the undersigned creates a
Prevenfion Asreemen_‘. meaningful interpretive dance that

compares and controsts cache"based,
fiming, and other side. channel attacks

1, » pPromisc thar once ond their countermeasures.

YOUT' Name

I see how simp|e. AES re.a“y IS, I will

not implemen1' it in producfion code
even 'rhough it would be rea||y fun.
-——_‘-_—

Signa-rure Dare

Source:
moserware.com/2009/09/stick-figure-guide-to-advanced.html

Key management = Access control

“This bar Is pretty
good, but you have
to go stand In line
for a ticket before
they serve you.”

Source:
twitter.com/sweis/status/982272891948421120

Signal: Deniability, forward + backward secrecy

{ Signal .
| messaging |

| evolution |

/ | Authenticated |
| key agreement |

Protected
Elegant | RN
- communication |

protocols —

Utilitarian

' Block f ? Hash f ?“ Modular f
tools ' | |

| ciphers | | functions | |arithmetic]

R

i Random(ish) ﬁ
| permutations |

guddu

\
» !

v

4o’

' ‘ Rt 010
‘
l'. Py 2
:

Hardware Key

Passcode Key

~— 7

Master key generated
from things that you
know, are, and have

Deriving keys from a password

-

Class Key

~— 7

Derive keys that live
only for limited time

File System Key

o

-

File Metadata
File Contents

File Key

Use these to wrap a unique key for each file

Cryptography enables data analysis without data sharing

o (R i
(i T 4“
11 'm(
T ([T TV 2Ty
I llml””\! i HH 1M
| — e
anW !
' "‘,fH" il

) summ ul (m.mmgu“,ﬂ |
Fe IHH S KE 10 ‘I el b=l T
it -T' _ 1L Ul | t JiLLR))) S

.m . mm T
mm ll "i

NI W) =))

T W Emone e

.I
y .’. ‘4

'
.
. ?
i
- ’
J

