
Lecture 22: Protected databases, randomness

• Final exam is Saturday, May 11 at 3-5pm in PHO 211 (usual classroom) 

• Review session for the final is Sat 5/4 at 3-5pm in MCS 180 

• No office hours next week 

• Please complete course evaluation at bu.campuslabs.com/courseeval 
by Monday 5/6 (apparently this class has a low response rate so far) 

• Have a good summer!

http://bu.campuslabs.com/courseeval


4FDVSF DPNQVUBUJPO
Y1

Y2

Y3

Y4

Y5

∴ G(Y1, Y2, Y3, Y4, Y5)

1SFNJTF�
" .VUVBMMZ EJTUSVTUJOH QBSUJFT

FBDI XJUI B QSJWBUF JOQVU
" -FBSO UIF SFTVMU PG

BHSFFE�VQPO DPNQVUBUJPO
" &Y� FMFDUJPO BVDUJPO FUD�

4FDVSJUZ HVBSBOUFFT�
" 1SJWBDZ 	َMFBSO OP NPSF

UIBOُ QSFTDSJCFE PVUQVU

" *OQVU JOEFQFOEFODF
" 0VUQVU DPOTJTUFODZ FUD��

��FWFO JG TPNF QBSUJFT DIFBU
DPMMVEF�

�
�
�
�
�
�
�
�Slides by Mike Rosulek, OSU



Techniques for cryptographically secure computing

• Garbled circuits 

• Secret sharing

Th
ro

ug
hp

ut
 o

f A
ES

 e
nc

ip
he

rin
g 

(b
yt

es
/s

ec
)

using MPC 

in the clear



 4



Cryptographically protected 
data structures



Let’s protect a database

Analyst
Backend	storage

Database	server

possible	
threats?

Data	owner



Encryption in transit

Backend	storage
Database	server

possible	
threats?

Data	owner

Analyst



Encryption at rest

Backend	storage
Database	server

possible	
threats?

Data	owner

Analyst



Encryption in use

Backend	storage
Database	server

possible	
threats?

Data	owner

Analyst



Encryption in use

Backend	storage
Database	server

possible	
threats?

Data	owner

Analyst

Desired goal: “garbled indexes” that permit the 
server to search directly over encrypted records 
• Server shouldn’t see either data or queries 
• Server might observe access patterns though



Cryptographically protected database search

Utility of stored data

Ri
sk

 o
f d

at
a 

co
m

pr
om

ise

Return whole dataset encrypted

No server protections  
(encrypt data at rest)

Multi-party computation

Symmetric searchable encryption

Property preserving encryption



Utility of stored data

Ri
sk

 o
f d

at
a 

co
m

pr
om

ise

State of the art

Return whole dataset encrypted

No server protections  
(encrypt data at rest)

Multi-party computation



Abstract view of a single-table database

id fname lname Age Income Photo
1 Alice Jones 20 71,000 <alice.jpg>
2 Bob Jones 25 58,000 <bob.jpg>
3 Charlie Smith 50 62,000 <charlie.jpg>
4 David Williams 55 75,000 <david.jpg>

Enc(records)Index

Small data structure: map 
searchable terms to 

associated record ids

Large file store: standard 
authenticated encryption 
applied to each record

Searchable Unsearchable



1. Property Preserving Encryption (PPE)

• Apply transformation that preserves relevant features 

• Insert into a legacy database for indexing & searching

id fname lname Age Income
1 Alice Jones 20 71,000
2 Bob Jones 25 58,000
3 Charlie Smith 50 62,000
4 David Williams 55 75,000

id fname lname Age Income
1 qIap1 Lf4Pz cnr g71 r90

2 7fBwo Lf4Pz duo g58 r84

3 AKx0k sw2AD syv g62 r22

4 CK6ZD 6lVTH tng g75 r38

Operation: DET (=) OPE (<) HOM (+, x)
Method: Choose Enc function at random Choose random monotonic function Public-key crypto
Drawback: Cloud sees equality patterns Cloud sees < and ~distances Slow



1. Property Preserving Encryption (PPE)

• Fast & legacy compliant 

• Supported by a database near you! 

• Google: Encrypted BigQuery 

• Microsoft: SQL Server 2016, Azure SQL Database 

• Startups: Bitglass, Ciphercloud, CipherQuery, Crypteron, IQrypt, Kryptonostic, 
PreVeil, Skyhigh, ZeroDB 

• Weakness: leakage provided to cloud is strong enough to permit data & 
query reconstruction attacks



2. Searchable Symmetric Encryption (SSE)

• Privacy: reveals or “leaks” less information to the database server 

• Query expressivity: large subset of SQL 

• Scale: tested on databases with 100m records 

• Performance: within 5x of MariaDB



SSE example (Blind Seer)

• Consider a tree in which each node stores a set 

• Leaves: set of keywords in that record 

• Other nodes: union of children 

• Roles 

• Data owner makes tree 

• Cloud server & client jointly 
traverse using garbled circuits 

• Consider the query name = Alice ∧ age = 25 

• Imperfect security: tree search pattern reveals info about data

fname = Alice 
age = 20

fname = Bob 
age = 25 

fname = Charlie 
age = 50

fname = David 
age = 55

All keywords

n=Alice, a=20, 
n=Bob, a=25

fname = Alice 
age = 20

fname = Bob 
age = 25 

n=Charlie, a=50, 
n=David, a=55

fname = Charlie 
age = 50

fname = David 
age = 55

✘

✔

✔
✘

✘



All database types can be protected with crypto

Structure Query basis Examples Strengths

Relational Set mathematics MySQL, Oracle, Postgres Transactional support 
Standardized SQL interface

Key-value Associative arrays BigTable, Hbase, 
Accumulo

High insert rates 
Flexible data models

Graph Linear algebra IBM System G, 
GraphBLAS, Neo4j

Natural data representation 
Amenable to graph algs

Array Linear algebra SciDB, TileDB
Transactional support 
High performance 
Specialized to scientific computing

NewSQL Set mathematics Google Spanner, 
MemSQL, Spark

Transactional support 
High insert rate



Most SQL query types are supported by SSE

Type Description SQL Example

Short 
string

Equality fname = ‘Homer’

Wildcard notes LIKE ‘%oo %oo!’

Substring notes LIKE ‘%mmm%’

Numeric
Inequality age !>= 30

Ranges age BETWEEN 38 and 42

Long text
Free-text keyword CONTAINED_IN(notes, ‘donut’)

Stemming CONTAINS_STEM(notes, ‘work’)

Boolean

Conjunction/disjunction lname = ‘Simpson’ AND city = ‘Springfield’

Threshold M_OF_N(2, 3, income > 40000, citizenship = 
‘Yes_Born_In_US’, marital_status = ‘Married’)

Ranking M_OF_N(2, 3, income > 40000, citizenship = 
‘Yes_Born_In_US’, marital_status = ‘Married’) ORDER BY RANK



Information revealed by SSE

• Protected search schemes reveal or leak some information about the 
query, data set, and result set to each party. 

1. Structure: size of an object, e.g. length of a string or cardinality of a set 

2. Identifiers: pointers to objects that persist across multiple accesses 

3. Equality or Order of values 

• Some schemes leak: 

1. At Initialization on entire DB 

2. At Query on relevant records



49

Weekly reading: the Pareto Frontier of protected databases



Weekly reading: inference attacks from leaked information

50



Random number generation



Randomness ⇒ Unpredictability ⇒ Secrecy



Effects of bad randomness

• Lottery fraud 

• Weak TLS keys on Debian 
computers in 2006-2008 

• Weak RSA keys 

• …and more Source: xkcd.com/221



Bad randomness in Debian

Bug forum discussion, 2003 

I'm using Valgrind to debug a program that 
uses the OpenSSL libraries, and got 
warnings about uninitialized data in the 
function RSA_padding_add_PKCS1_type_2(), 
on the line with "} while (*p == '\0');" (line 
171 in version 0.9.7a). The following patch 
ensures that the data is always modified, 
something that the bytes() method 
obviously fails to do. 

!!--- rand_lib.c Thu Jan 30 2003 
!!+++ rand_lib.c Wed Feb 26 2003 
@@ -154,6 +154,7 @@ 
int RAND_bytes(unsigned char *buf, int num) 
{ 
[new code here]

Debian security advisory, 2008 

Luciano Bello discovered that the random 
number generator in Debian's openssl 
package is predictable. This is caused by an 
incorrect Debian-specific change to the 
openssl package. As a result, cryptographic 
key material may be guessable. … 

It is strongly recommended that all 
cryptographic key material which has been 
generated by OpenSSL versions starting 
with 0.9.8c-1 on Debian systems is recreated 
from scratch. Furthermore, all DSA keys 
ever used on affected Debian systems for 
signing or authentication purposes should 
be considered compromised.



Bad randomness in RSA key generation



How you obtain randomness: /dev/urandom



How a computer generates randomness

Step 1: Harvest 
Reliably produce a “pool” 
of bits with true entropy

Step 2: Extract 
Produce ~128 nearly 

uniform bits from the pool

Step 3: Expand 
Create a large sequence  
of pseudorandom bits

Statistical tests to see 
if entropy is “sufficient”



Security requirements of randomness generation

1. Performance: Be fast enough that people will use it 

2. Hard fail: Only expand once the system has been 
adequately seeded with true entropy 

3. Resilience: Adversary can’t predict outputs, even 
if she can partially influence the source of true 
randomness 

4. Forward + backward secrecy: Adversary cannot 
predict past or future PRNG outputs even if she 
knows the current seed and state

Re-seed the PRNG 
periodically with new 
truly random numbers

Use multiple sources of 
entropy, and combine 
them in a smart way



– IEEE Spectrum

“Fortunately, it’s not hard to harvest truly unpredictable 
randomness by tapping the chaotic universe that surrounds 
a computer's orderly, deterministic world of 1s and 0s.”

Step 1: Harvest 
Reliably produce a “pool” 
of bits with true entropy

Step 2: Extract 
Produce ~128 nearly 

uniform bits from the pool

Step 3: Expand 
Create a large sequence  
of pseudorandom bits



Step 1: Sources of entropy to harvest

• Physics: EM radiation, temperature (random.org/history)

http://random.org/history


Step 1: Sources of entropy to harvest

• Physics: EM radiation, temperature (random.org/history) 

• Logical gates: Clock drift, thermal noise

Apple’s Secure Enclave

http://random.org/history


Step 1: Sources of entropy to harvest

• Physics: EM radiation, temperature (random.org/history) 

• Logical gates: Clock drift, thermal noise 

• Quantumness: beam splitters & polarization, tunneling, entanglement

http://random.org/history


Step 1: Sources of entropy to harvest

• Physics: EM radiation, temperature (random.org/history) 

• Logical gates: Clock drift, thermal noise 

• Quantumness: beam splitters & polarization, tunneling, entanglement 

• Human: keystroke timings, mouse movements, hard drive seek times 

• Sensors: microphone, camera, gyroscope, Bluetooth/GPS/wifi signal

http://random.org/history


Step 3: Pseudorandom expansion

Step 1: Harvest 
Reliably produce a “pool” 
of bits with true entropy

Step 2: Extract 
Produce ~128 nearly 

uniform bits from the pool

Step 3: Expand 
Create a large sequence  
of pseudorandom bits

Statistical tests to see 
if entropy is “sufficient”



Step 3: NIST standards for DRBGs

• Use counter mode as a stream cipher (CTR_DBRG)

Synthetic, one 
time use key K’

Short K
+

Nonce N
⇒

Source: NIST Special Publication 800-90A 

Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators



Step 3: NIST standards for DRBGs

• Use counter mode as a stream cipher (CTR_DRBG) 

• A MAC is pseudorandom (HMAC_DRBG)

MAC$

Verify$ No!

MAC$

Source: NIST Special Publication 800-90A 

Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators



Step 3: NIST standards for DRBGs

• Use counter mode as a stream cipher (CTR_DRBG) 

• A MAC is pseudorandom (HMAC_DRBG) 

• Use a hash function (Hash_DRBG)

Source: NIST Special Publication 800-90A 

Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators



Step 2: Extraction of uniform-looking bits

Step 1: Harvest 
Reliably produce a “pool” 
of bits with true entropy

Step 2: Extract 
Produce ~128 nearly 

uniform bits from the pool

Step 3: Expand 
Create a large sequence  
of pseudorandom bits

Statistical tests to see 
if entropy is “sufficient”



Hashing as an extractor?

• Let’s try to use a hash function H as an extractor (spoiler: it won’t work) 

• Extractors operate on the principle that including more entropy sources can't hurt: 
H(x,y,z) is at least as good a random number as H(x,y), no matter how awful z is 

• Issue: the entity that chooses z can strongly influence the resulting “random” number 

1. Generate a random z 

2. Try computing H(x,y,z) 

3. If H(x,y,z) doesn't start with bits 0000, go back to step 1 

4. Else, output this value of z 

• Result: H(x,y,z) begins with four known bits of 0000, even if x and y were perfectly random 

• Also, this attack is fast: it only takes 16 computations of H on average



Extraction is hard

Step 1: Harvest 
Reliably produce a “pool” 
of bits with true entropy

Step 2: Extract 
Produce ~128 nearly 

uniform bits from the pool

Step 3: Expand 
Create a large sequence  
of pseudorandom bits

Statistical tests to see 
if entropy is “sufficient”



Goal: Secure communication in presence of adversary

message	M

???

key	K key	Kkey	agreement

encrypt	C	=	E(K,	M)

decrypt	M	=	D(K,	C)



Modes of operation for authentication and/or encryption

Cryptographic doom principle 
If you have to perform any crypto 
operation before verifying the MAC on a 
message you’ve received, it will somehow 
inevitably lead to doom! 

– Moxie Marlinspike



Widespread use of good crypto: Auth Enc, SHA-2, …



Crypto in TLS == really fast!
everything else 
the server does



Divide-and-conquer ⇒ Side channels + cryptanalysis

Source: 
moserware.com/2009/09/stick-figure-guide-to-advanced.html



Key management ⇒ Access control

“This bar is pretty 
good, but you have 
to go stand in line 
for a ticket before 
they serve you.” 

 
Source: 
twitter.com/sweis/status/982272891948421120



Random(ish) 
permutations

Block 
ciphers

Hash 
functions

Modular 
arithmetic

Protected 
communication

Authenticated 
key agreement

Key 
evolution

Signal 
messaging

Utilitarian 
tools

Elegant 
protocols

Signal: Deniability, forward + backward secrecy



Deriving keys from a password

Master key generated 
from things that you 
know, are, and have

Derive keys that live 
only for limited time

Use these to wrap a unique key for each file



 51
Cryptography enables data analysis without data sharing


