
CS450
Structure of Higher Level Languages

Lecture 4: Nested de�nitions, tail-call optimization

Tiago Cogumbreiro

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 1 / 36

A quick recap…

2 / 36

; Constructor
(define (point x y z) (list x y z))
(define (point? x)
 (and (list? x)
 (= (length x) 3)))
; Accessors
(define (point-x pt) (first pt))
(define (point-y pt) (second pt))
(define (point-z pt) (third pt))

a default constructor with the name of the
type and its �elds as parameters
one accessor per �eld
function point? returns true if, and only if,
the given value is a point (Exercise 3 of
HW1)

User data-structures
We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 3 / 36

Quoting exercises:
You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identi�ers) and (2) parenthesis are well balanced
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program?

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 4 / 36

Quoting exercises:
You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identi�ers) and (2) parenthesis are well balanced
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be well-
balanced, identi�ers must be valid Racket identi�ers, number literals must be valid).
Can we serialize an invalid Racket program?

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 4 / 36

Quoting exercises:
You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identi�ers) and (2) parenthesis are well balanced
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be well-
balanced, identi�ers must be valid Racket identi�ers, number literals must be valid).
Can we serialize an invalid Racket program? Yes. For instance, try to quote the term:
(lambda)

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 4 / 36

Quote example
#lang racket
(require rackunit)
(check-equal? 3 (quote 3)) ; Serializing a number returns the number itself
(check-equal? 'x (quote x)) ; Serializing a variable named x yields symbol 'x
(check-equal? (list '+ 1 2) (quote (+ 1 2))) ; Serialization of function as a list
(check-equal? (list 'lambda (list 'x) 'x) (quote (lambda (x) x)))
(check-equal? (list 'define (list 'x)) (quote (define (x))))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 5 / 36

On HW1 Exercise 4
The input format of the quoted term are precisely described in the slides of Lecture 3
You do not need to test recursively if the terms in the body of a function declaration or
de�nition are valid.

For instance,

function-def = (lambda (variable*) term+)

A list, with one symbol lambda followed by zero or more symbols, and one or more terms.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 6 / 36

Today we will…
1. Learn about a good use of nested de�nitions
2. Analyse some code's performance
3. Introduce tail-call optimization

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in
CSE341 from the University of Washington. (Video available)

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 7 / 36

https://courses.cs.washington.edu/courses/cse341/18au/lec3slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit1/uncaptioned/014-let-efficiency.mp4

Build a list from 1 up to n
Our goal is to build a list from 1 up to some number. Here is a template of our function and a
test case for us to play with. For the sake of simplicity, we will not handle non-positive numbers.

#lang racket
(define (countup-from1 x) #f)

(require rackunit)
(check-equal? (list 1) (countup-from1 1))
(check-equal? (list 1 2) (countup-from1 2))
(check-equal? (list 1 2 3 4 5) (countup-from1 5))

Hint: write a helper function count that builds counts from n up to m.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 8 / 36

Exercise 1: attempt #1
We write a helper function count that builds counts from n up to m.

#lang racket
(define (countup-from1 x)
 (count 1 x))

(define (count from to)
 (cond
 [(= from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 9 / 36

Exercise 1: attempt #2
We move function count to be internal to function countup-from1, as it is a helper function and
therefore it is good practice to make it private to countup-from1.

(define (countup-from1 x)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from to)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))
 ; The same call as before
 (count 1 x))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 10 / 36

When to nest functions
Nest functions:

If they are unnecessary outside
If they are under development
If you want to hide them: Every function in the public interface of your code is something
you'll have to maintain!

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 11 / 36

Intermission:

Nested de�nitions

12 / 36

Nested de�nition: local variables
Nested de�nitions bind a variable within the body of a function and are only visible within that
function (these are local variables)

#lang racket
(define (f x)
 (define z 3)
 (+ x z))

(+ 1 z) ; Error: z is not visible outside function f

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 13 / 36

Nested de�nitions shadow other variables
Nested de�nitions silently shadow any already de�ned variable

#lang racket
(define z 10)
(define (f x)
 (define x 3) ; Shadows parameter
 (define z 20) ; Shadows global
 (+ x z))

(f 1) ; Outputs 23

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 14 / 36

No rede�ned local variables
It is an error to re-de�ne local variables

#lang racket
(define (f b)
 ; OK to shadow a parameter
 (define b (+ b 1))
 (define a 1)
 ; Not OK to re-define local variables
 ; Error: define-values: duplicate binding name
 (define a (+ a 1))
 (+ a b))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 15 / 36

Back to Exercise 1

16 / 36

Exercise 1: attempt #2
Notice that we have some redundancy in our code. In function count, parameter to remains
unchanged throughout execution.

(define (countup-from1 x)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from to)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))
 ; The same call as before
 (count 1 x))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 17 / 36

Exercise 1: attempt #3
We removed parameter to from function count as it was constant throughout the execution.
Variable to is captured/copied when count is de�ned.

(define (countup-from1 to)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from)))]))
 ; The same call as before
 (count 1))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 18 / 36

Examle 1: summary
Use a nested de�nition to hide a function that is only used internally.
Nested de�nitions can refer to variables de�ned outside the scope of their de�nitions.
The last expression of a function's body is evaluated as the function's return value

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 19 / 36

Example 2
Maximum number from a list of integers

20 / 36

Example 2: attempt 1
Finding the maximum element of a list.

#lang racket
(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)] ; The list only has one element (the max)
 [(> (first xs) (max (rest xs))) (first xs)] ; The max of the rest is smaller than 1st
 [else (max (rest xs))])) ; Otherwise, use the max of the rest

; A simple unit-test
(require rackunit)
(check-equal? 10 (max (list 1 2 10 4 0)))

We use function error to abort the program with an exception. We use functions first and rest
as synonyms for car and cdr, as it reads better.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 21 / 36

Example 2: attempt 1
Finding the maximum element of a list.

Let us benchmark max with sorted list (worst-case scenario):
20 elements: 18.43ms
21 elements: 36.63ms
22 elements: 75.78ms

Whenever we add an element we double the execution time. Why?

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 22 / 36

Example 2: attempt 1
Whenever we hit the else branch (because we can't �nd the maximum), we re-compute the max
element.

(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)] ; The list only has one element (the max)
 [(> (first xs) (max (rest xs))) (first xs)] ; The max of the rest is smaller than 1st
 [else (max (rest xs))])) ; Otherwise, use the max of the rest

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 23 / 36

Example 2: attempt 2
We use a local variable to cache a duplicate computation.

(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)]
 [else
 (define rest-max (max (rest xs))) ; Cache the max of the rest
 (cond
 [(> (first xs) rest-max) (first xs)]
 [else rest-max])]))

Attempt #1: 20 elements in 75.78ms
Attempt #2: 1,000,000 elements in 101.15ms

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 24 / 36

Example 2 takeaways
Use nested de�nitions to cache intermediate results
Identify repeated computations and cache them in nested (local) de�nitions

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 25 / 36

Example 2: attempt 3
(define (max xs) =
 ; The maximum between two numbers
 (define (max2 x y) (cond [(< x y) y] [else x]))
 ; Accumulate the maximum number as a parameter of recursion
 (define (max-aux curr-max xs)
 ; Get the max between the accumulated and the first
 (define new-max (max2 curr-max (first xs)))
 (cond
 [(empty? (rest xs)) new-max] ; Last element is max
 [else (max-aux new-max (rest xs))])) ; Otherwise, recurse
 ; Only test if the list is empty once
 (cond
 [(empty? xs) (error "max: empty list")]
 [else (max-aux (first xs) xs)]))

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 26 / 36

Comparing both attempts
Element countElement count Execution timeExecution time IncreaseIncrease

Attempt #2 1,000,000 101.15ms
Attempt #3 1,000,000 20.98ms 4.8 speedup
Attempt #2 10,000,000 1410.06ms
Attempt #3 10,000,000 237.66ms 5.9 speedup

Why is attempt #3 so much faster?

Because attempt #3 is being target of a Tail-Call optimization!

×

×

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 27 / 36

Call stack & Activation frame
Call Stack: To be able to call and return from functions, a program internally maintains a stack
called the call-stack, each of which holds the execution state at the point of call.
Activation Frame: An activation frame maintains the execution state of a running function.
That is, the activation frame represents the local state of a function, it holds the state of each
variable.
Push: When calling a function, the caller creates an activation frame that is used by the called
function (eg, to pass arguments to the function being called).
Pop: Before a function returns, it pops the call stack, freeing its local state.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 28 / 36

Program

(define (fact n)
 (cond
 [(= n 1) 1]
 [else
 (* n (fact (- n 1)))]))

Evaluation

(fact 3)
(* 3 (fact 2))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 1))
(* 3 2)
6

Call-Stack

[n=3,return=(* 3 (fact 2))]
[n=3,return=(* 3 ?)],[n=2,return=(* 2 (fact 1))]
[n=3,return=(* 3 ?)],[n=2,return=(* 2 ?)],[n=1,return=1]
[n=3,return=(* 3 ?)],[n=2,return=2]
[n=3,return=6]

Consider executing the factorial

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 29 / 36

Call-stack and recursive functions
Recursive functions pose a problem to this execution model, as the call-stack may grow
unbounded! Thus, most non-functional programming languages are conservative on growing the
call stack.

def fact(n):
 return 1 if n �� 1 else n * fact(n - 1)
fact(1000)

Outputs

 File "<stdin>", line 1, in fact
RuntimeError: maximum recursion depth exceeded
`

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 30 / 36

Program

(define (fact n)
 (define (fact-iter n acc)
 (cond
 [(= n 0) acc]
 [else
 (fact-iter (- n 1) (* acc n))]))
 (fact-iter n 1))
(fact 3)

Evaluation

(fact 3)
(fact-iter 3 1)
(fact-iter 2 3)
(fact-iter 1 6)
6

Factorial: attempt #2

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 31 / 36

Factorial: attempt #2
Call stack

[n=3,return=(fact-iter 3 1)]
[n=3,return=?],[n=3,acc=1,return=(fact-iter 2 3)]
[n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3,return=(fact-iter 1 6)]
[n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3,return=?],[n=1,acc=6,return=6]
[n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3,return=6]
[n=3,return=?],[n=3,acc=1,return=6]
[n=3,return=6]

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 32 / 36

The tail position of a sequence of
expressions is the last expression of that
sequence.

(lambda ()
 exp1
 ; ...
 expn) <�� tail position

When a function call is in the tail position we
named it the tail call.

(lambda ()
 exp1
 ; ...
 (f ...)) <�� f is a tail call

Tail position and tail call

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 33 / 36

Tail call and the call stack
A tail call does not need to push a new activation frame! Instead, the called function can "reuse"
the frame of the current function. For instance, in (fact 3), the call (fact-iter 3 1) is a tail call.
[n=3,return=(fact-iter 3 1)]
[n=3,return=?],[n=3,acc=1,return=(fact-iter 2 3)]
Can be rewritten with:
[n=3,return=(fact-iter 3 1)]
[n=3,acc=1,return=(fact-iter 2 3)]
In attempt #2, both calls to fact-iter are tail calls.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 34 / 36

Tail-Call Optimization
Eschews the need to allocate a new activation frame
In a recursive tail call, the compiler can convert the recursive call into a loop, which is more
ef�cient to run (recall our 5 speedup)×

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 35 / 36

Guidelines to write tail-recursive code
Create a helper function that takes an accumulator (which stores what is calculated after the
call)
The base case of the original function becomes the initial accumulator
The base case of the new function becomes the accumulator

Caveats

Not all recursive functions can be optimized to be tail-recursive
(eg, in tree-based algorithms when the function recurses on more than one node)
Be weary that: premature optimization is the root of all evils.

CS450 ☽ Nested de�nitions, tail-call optimization ☽ Lecture 4 ☽ Tiago Cogumbreiro 36 / 36

