CS450

Structure of Higher Level Languages
Lecture 4: Nested definitions, tail-call optimization

Tiago Cogumbreiro

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

A quicKk recap...

User data-structures M

We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

e a default constructor with the name of the

(define (point x y z) (list x y z)) type and its fields as parameters
(define (901”t?) e one accessor per field
(and (list? x) , : . .
(= (length x) 3))) o function point? returns true if, and only if,
the given value is a point (Exercise 3 of
(define (point-x pt) (first pt)) HW1)

(define (point-y pt) (second pt))
(define (point-z pt) (third pt))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Quoting exercises: ?//l

e You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identifiers) and (2) parenthesis are well balanced

We can write 'term rather than (quote term)

How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program?

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Quoting exercises: ?//l

e You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identifiers) and (2) parenthesis are well balanced

We can write 'term rather than (quote term)

How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be well-
balanced, identifiers must be valid Racket identifiers, number literals must be valid).

o Can we serialize an invalid Racket program?

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Quoting exercises: ?//l

e You can serialize any code (even non-valid Racket programs) as long: (1) literals follow
Racket's rules (numbers, strings, identifiers) and (2) parenthesis are well balanced

We can write 'term rather than (quote term)

How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 18 x) x] [else #f]) with quote?

Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be well-
balanced, identifiers must be valid Racket identifiers, number literals must be valid).

o Can we serialize an invalid Racket program? Yes. For instance, try to quote the term:

(1ambda)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Quote example 7

BOSTON

#lang racket

(require rackunit)

(check-equal? 3 (quote 3))

(check-equal? 'x (quote x))

(check-equal? (1list '+ 1 2) (quote (+ 1 2)))

(check-equal? (1list 'lambda (list 'x) 'x) (quote (lambda (x) x)))
(check-equal? (1list 'define (list 'x)) (quote (define (x))))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

On HW1 Exercise 4 M

e The input format of the quoted term are precisely described in the slides of Lecture 3

e You do not need to test recursively if the terms in the body of a function declaration or
definition are valid.

For instance,

function-def = (lambda (variable*) term+)

e A list, with one symbol lambda followed by zero or more symbols, and one or more terms.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Today we will... 7

1. Learn about a good use of nested definitions
2. Analyse some code's performance
3. Introduce tail-call optimization

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in
CSE341 from the University of Washington. (Video available)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

https://courses.cs.washington.edu/courses/cse341/18au/lec3slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit1/uncaptioned/014-let-efficiency.mp4

Build a list from 1 up to n 7

BOSTON

Our goal is to build a list from 1 up to some number. Here is a template of our function and a
test case for us to play with. For the sake of simplicity, we will not handle non-positive numbers.

ftlang racket
(define (countup-from1 x) #f)

(require rackunit)

(check-equal? (1ist 1) (countup-froml 1))
(check-equal? (1list 1 2) (countup-froml 2))
(check-equal? (list 1 2 3 4 5) (countup-froml 5))

I Hint: write a helper function count that builds counts from n up to m.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxercise 1: attempt #1 ?//l

I We write a helper function count that builds counts from n up to m.

flang racket
(define (countup-froml x)
(count 1 x))

(define (count from to)
(cond
[(= from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxercise 1 attempt #2 M

We move function count to be internal to function countup-from1, as it is a helper function and
therefore it is good practice to make it private to countup-from?.

(define (countup-froml x)

(define (count from to)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

(count 1 x))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

When to nest functions m

Nest functions:
o If they are unnecessary outside
e If they are under development

o If you want to hide them: Every function in the public interface of your code is something
you'll have to maintain!

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

INntermission:

Nested detinitions

12/ 36

Nested deftinition: local variables M

Nested definitions bind a variable within the body of a function and are only visible within that
function (these are local variables)

ftlang racket

(define (f x)
(define z 3)
(+ x 2))

(+ 1 2)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Nested definitions shadow other variables M

I Nested definitions silently shadow any already defined variable

ftlang racket

(define z 10)

(define (f x)
(define x 3)
(define z 20)

(+ x 2))
(f 1)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

No redetined local variables ?//l

I It is an error to re-define local variables

ftlang racket
(define (f b)

(define b (+ b 1))
(define a 1)

(define a (+ a 1))
(+ ab))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Back to exercise 1

Fxercise 1 attempt #2 M

Notice that we have some redundancy in our code. In function count, parameter to remains
unchanged throughout execution.

(define (countup-froml x)

(define (count from to)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from) to))]))

(count 1 x))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxercise 1: attempt #3 m

We removed parameter to from function count as it was constant throughout the execution.
Variable to is captured/copied when count is defined.

(define (countup-froml to)

(define (count from)
(cond [(equal? from to) (list to)]
[else (cons from (count (+ 1 from)))]))

(count 1))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxamle 1 summary m

e Use a nested definition to hide a function that is only used internally.
« Nested definitions can refer to variables defined outside the scope of their definitions.
e The last expression of a function's body is evaluated as the function's return value

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

-xample 2

Maximum number from a list of integers

20/36

Fxample 2: attempt 1 M

I Finding the maximum element of a list.

ftlang racket
(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
[(empty? (rest xs)) (first xs)]
[(> (first xs) (max (rest xs))) (first xs)]
[else (max (rest xs))]))

(require rackunit)
(check-equal? 10 (max (list 12 10 4 9)))

We use function error to abort the program with an exception. We use functions first and rest
as synonyms for car and cdr, as it reads better.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxample 2: attempt 1 m

I Finding the maximum element of a list.

Let us benchmark max with sorted list (worst-case scenario):
e 20 elements: 18.43ms
o 21 elements: 36.63ms
o 22 elements: 75.78ms

I Whenever we add an element we double the execution time. Why?

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxample 2: attempt 1 m

Whenever we hit the else branch (because we can't find the maximum), we re-compute the max
element.

(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
(empty? (rest xs)) (first xs)]
[(> (first xs) (max (rest xs))) (first xs)]
[else (max (rest xs))]))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxample 2: attempt 2 m

I We use a local variable to cache a duplicate computation.

(define (max xs)
(cond
[(empty? xs) (error "max: expecting a non-empty list!")]
[(empty? (rest xs)) (first xs)]
[else
(define rest-max (max (rest xs)))
(cond
[(> (first xs) rest-max) (first xs)]
[else rest-max])]))

o Attempt #1: 20 elements in 75.78ms
o Attempt #2: 1,000,000 elements in 101.15ms

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxample 2 takeaways ?//l

e Use nested definitions to cache intermediate results

o Identify repeated computations and cache them in nested (local) definitions

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Fxample 2: attempt 3 m

(define (max xs) =

(define (max2 x y) (cond [(< x y) y] [else x]))

(define (max-aux curr-max Xs)

(define new-max (max2 curr-max (first xs)))
(cond

[(empty? (rest xs)) new-max]

[else (max-aux new-max (rest xs))]))

(cond
[(empty? xs) (error "max: empty list")]
[else (max-aux (first xs) xs)]))

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Comparing both attempts m

Element count Execution time Increase
Attempt #2 1,000,000 101.15ms
Attempt #3 1,000,000 20.98ms 4.8 X speedup
Attempt #2 10,000,000 1410.06ms
Attempt #3 10,000,000 237.66ms 5.9 X speedup

I Why is attempt #3 so much faster?

Because attempt #3 is being target of a Tail-Call optimization!

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Call stack & Activation frame M

 Call Stack: To be able to call and return from functions, a program internally maintains a stack
called the call-stack, each of which holds the execution state at the point of call.

« Activation Frame: An activation frame maintains the execution state of a running function.
That is, the activation frame represents the local state of a function, it holds the state of each
variable.

e Push: When calling a function, the caller creates an activation frame that is used by the called
function (eg, to pass arguments to the function being called).

« Pop: Before a function returns, it pops the call stack, freeing its local state.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

A,

Consider executing the factorial s
Program
(define (fact n)
(cond
[(=n1) 1]
[else
(* n (fact (- n 1)))]))

Evaluation Call-Stack
(fact 3) [n=3,return=(* 3 (fact 2))]
(* 3 (fact 2)) n=3,return=(* 3 ?)],[n=2,return=(* 2 (fact 1))]
(* 3 (* 2 (fact 1))) [n=3,return=(* 3 ?)],[n=2,return=(* 2 ?)],[n=1,return=1]
(*3(*21)) [n=3,return=(* 3 ?)],[n=2,return=2]
(* 32) [n=3,return=6]
6

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Call-stack and recursive functions M

Recursive functions pose a problem to this execution model, as the call-stack may grow
unbounded! Thus, most non-functional programming languages are conservative on growing the
call stack.

def fact(n):
return 1 if n < 1 else n * fact(n - 1)
fact(1000)

Outputs

File "<stdin>", line 1, in fact
RuntimeError: maximum recursion depth exceeded

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Factorial: attempt #2 m

Program Evaluation
(define (fact n) (fact 3)
(define (fact-iter n acc) (fact-iter 3 1)
(cond (fact-iter 2 3)
[(= n @) acc] (fact-iter 1 6)
[else 6

(fact-iter (- n 1) (* acc n)) 1))
(fact-iter n 1))
(fact 3)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Factorial: attempt #2 m

Call stack

n=3,return=(fact-iter 3 1)]

[n=3,return=?],[n=3,acc=1,return=(fact-iter 2 3)]
n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3, return=(fact-iter 1 6)]
n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3, return=?],[n=1,acc=6, return=6]

n=3,return=?],[n=3,acc=1,return=?],[n=2,acc=3, return=6 |
n=3,return=?],[n=3,acc=1,return=6]
[n=3,return=6]

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Tail position and tail call %

The tail position of a sequence of (lgr)r(\bgia 0

expressions is the last expression of that P

SEATEREE. expn) <— tail position
When a function call is in the tail position we (lzgg?a 9

named it the tail call.
(f ...)) < f is a tail call

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Tail call and the call stack %

A tail call does not need to push a new activation frame! Instead, the called function can "reuse”
the frame of the current function. For instance, in (fact 3), the call (fact-iter 3 1) is a tail call.
[n=3,return=(fact-iter 3 1)]

[n=3,return=7],[n=3,acc=1, return=(fact-iter 2 3)]

Can be rewritten with:

[n=3,return=(fact-iter 3 1)]

[n=3,acc=1,return=(fact-iter 2 3)]

In attempt #2, both calls to fact-iter are tail calls.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Tail-Call Optimization %

e Hschews the need to allocate a new activation frame

 In a recursive tail call, the compiler can convert the recursive call into a loop, which is more
efficient to run (recall our 5X speedup)

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

Guidelines to write tall-recursive code M

« Create a helper function that takes an accumulator (which stores what is calculated after the
call)

e The base case of the original function becomes the initial accumulator
e The base case of the new function becomes the accumulator

Caveats

e Not all recursive functions can be optimized to be tail-recursive
(eg, in tree-based algorithms when the function recurses on more than one node)

e Be weary that: premature optimization is the root of all evils.

CS450) Nested definitions, tail-call optimization) Lecture4) Tiago Cogumbreiro

