
Homework Assignment 3

Any automatically graded answer may be manually graded by the instructor. Submissions
are expected to only use functions taught in the course. If a submission uses a disallowed function, that
exercise can get zero points. Excluding promises, all functions that mutate values are disallowed (mutable
functions usually have a ! in their name).

Promises
1. (30 points) Let a promise list be a promise that contains either empty, or a pair whose left element is

the head of the promise list, and whose right element is the tail of the promise list, which is therefore a
promise list. The goal of this exercise is to develop a library for manipulating promise lists. Note that
function (promise? p) returns #t if, and only if value p is a promise, otherwise it returns #f.

(a) (2 points) Define variable p:empty that is bound to the empty promise list.
(check-equal? empty (force p:empty))

(b) (3 points) Implement function (p:empty? l) that returns #t if, and only if, variable l is a promise
to a list. Note that each promise is its unique object, so comparison always fails. For in-
stance, (equal? (delay 1) (delay 1)) evaluates to #f. Thus, simply l against promise p:empty
is incorrect.
(check-true (p:empty? p:empty))
(check-false (p:empty? 10))

(c) (10 points) Manually graded. Explain if it is possible to implement a function (p:cons x l)
that constructs a new promise list such that x is the head of the resulting promise list, l is the
tail of the promise list, and x is not evaluated. If you answered that it is possible, then implement
(p:cons x l) and write a test-case that illustrates its usage. If you answered that it is impossible,
then explain how to encode such a function. Your answer must be written as a comment in the
solution file that you submit.

(d) (2.5 points) Implement function (p:first l) that obtains the head of a promise list.
(check-equal? (p:first (delay (cons 1 p:empty))) 1)

(e) (2.5 points) Implement function (p:rest l) takes a promise list and returns the tail of that promise
list.
(check-equal? (p:rest (delay (cons 1 p:empty))) p:empty)

(f) (10 points) Implement function (p:append l r) that concatenates two promise lists l and r. Re-
call the implementation of append in Lecture 6. Feel free to use the non-tail recursive version.

2. (20 points) Recall the Binary Search Tree (BST) we implemented in Exercise 3 of Homework Assign-
ment 1. Function bst->list flattens a BST and yields a sorted list of the members of the BST.

(define (bst->list self)
(cond [(empty? self) self]

[else
(append

(bst->list (tree-left self))
(cons (tree-value self)

(bst->list (tree-right self))))]))

(a) (10 points) Implement function (bst->p:list l) that returns an ordered promise list of the con-
tents of t, by following the implementation of function bst->list.



(b) (10 points) Manually graded. Give an example of a situation in which lazy evaluation outper-
forms eager evaluation. Use a function that manipulates promise lists to showcase your argument,
e.g., functions (p:append x y) or (bst->p:list l). Your answer must be written as a comment
in the solution file that you submit.

Infinite Streams

3. (10 points) Implement the notion of accumulator for infinite streams.1Given a stream s defined as

e0 e1 e2 ...

Function (stream-foldl f a s)

a (f e0 a) (f e1 (f e0 a)) (f e2 (f e1 (f e0 a))) ...

(define s (stream-foldl cons empty (naturals)))
(check-equal? (stream-get s) empty)
(check-equal? (stream-get (stream-next s)) (list 0))
(check-equal? (stream-get (stream-next (stream-next s))) (list 1 0))
(check-equal? (stream-get (stream-next (stream-next (stream-next s)))) (list 2 1 0)))

4. (10 points) Implement a function that advances an infinite stream a given number of steps. Given a
stream s defined as

e0 e1 e2 e3 e4 e5 ...

Function (stream-skip 3 s)

e3 e4 e5 ...

(define s (stream-skip 10 (naturals)))
(check-equal? (stream-get s) 10)
(check-equal? (stream-get (stream-next s)) 11)
(check-equal? (stream-get (stream-next (stream-next s))) 12)

Evaluating expressions

5. (30 points) Extend functions r:eval-exp with support for booleans.

(a) (2 points) Implement a data structure r:bool (using a struct) with a single field called value
that holds a boolean. Recall Lecture 5.

(b) (3 points) Extend the evaluation function to support boolean values.
(check-equal? (r:eval-exp (r:bool #t)) #t)
(check-equal? (r:eval-exp (r:bool #f)) #f)

(c) (10 points) Extend the evaluation to support binary-operation and. The semantics of and must
match Racket’s operator and. Recall that Racket’s and is not a variable to a function, but a special
construct, so its usage differs from function +, for instance.
(check-true (r:eval-exp (r:apply (r:variable ’and) (list (r:bool #t) (r:bool #t)))))
(check-false (r:eval-exp (r:apply (r:variable ’and) (list (r:bool #t) (r:bool #f)))))

1Recall that foldl is the accumulator for lists and was taught in Lecture 6.

Page 2



(d) (10 points) Extend function + to support multiple-arguments (including zero arguments).
(check-equal?

(r:eval-exp
(r:apply (r:variable ’+)

(list (r:number 1) (r:number 2) (r:number 3))))
6)

(e) (5 points) Extend primitive and to support multiple-arguments (including zero arguments).
(check-equal?

(r:eval-exp
(r:apply (r:variable ’and)

(list (r:bool #t) (r:number 2) (r:number 3))))
3)

Page 3


