
CS450
Structure of Higher Level Languages

Lecture 15: Mutable environments

Tiago Cogumbreiro

1 / 31



Today we will…
Why should we care about functional programming?
Implement environments using heaps and frames
Review some usage examples

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 2 / 31



Why learn

the Structure of

Higher Level Languages?

3 / 31



Structure of Higher Level Languages
I postponed this discussion, because I felt that you are now better suited to understand and
related to the points being made.

Why learn the fundamental concepts in all programming languages?
Why learn different languages?
Why focus on functional programming?
Why use Racket?

Disclaimer

Most of these claims are opinions
These will be mostly informal claims
We are not trying to �nd the best language (or programming model)

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 4 / 31



Overview
Languages are just tools, learn which language is amenable to what context
The best programming language does not exist (theoretically most languages are equivalent)
Different languages have different characteristics that favour different domains: for instance,
functional languages being used in Programming Language research, C/Fortran in
scienti�c/high-performance computing
A programming language is a computing interface: it is crucial to understand its meaning
The importance of �rst-class functions and avoiding mutation

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 5 / 31



Semantics and idioms
Why should we care about language semantics?

A language is a computing user interface. 
We are learning reusable, cross-cutting patterns.
The semantics must be unambiguous and precise. 
It is not a matter of personal opinion how a conditional expression works. Language features
must be described unambiguously to users.
The semantics de�nes a software contract. 
Is the bug in the client's bug, or is it in our code?
Language idioms (patterns) are transferrable knowledge. 
Understanding idioms (patterns) teaches you something that can be applied across languages
and technologies.

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 6 / 31



How are all languages similar?

7 / 31



How are all languages the same?
Theoretical: Any input-output behavior implementable in language X is implementable in
language Y (Church-Turing thesis), and equivalent to the -calculus without numbers
Practical: Reoccurring fundamentals: variables, abstraction, recursive de�nitions

λ

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 8 / 31

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis


How are languages different?

9 / 31



Disclaimer
Languages are not slow/fast

A language implementation is fast/slow, not the language itself
Certain languages computational models are more amenable to implement ef�ciently
Languages are user interfaces of computational models

How different languages behave in different contexts?

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 10 / 31



Why is C faster than all other languages?
Is it because C is "close to the metal?" That is, is C fast because its semantics matches the
processor's semantics?

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 11 / 31



Why is C faster than all other languages?
Is it because C is "close to the metal?" That is, is C fast because its semantics matches the
processor's semantics? No!

First of all, which processor? How can it match the semantics of all processors?
The key of C's success lays in having good compilers.
C is fast because it is old and its interface remains stable!
Compilers are just really good at optimizing C.
There is a set of good practices to write optimizer-ready C code

Take away

The facts above make C quite successful in High Performance Computing (large scale scienti�c
codes).

Source: C Is Not a Low-level Language: Your computer is not a fast PDP-11. David Chisnall. ACM Queue vol. 16, no. 2.
2018

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 11 / 31

https://queue.acm.org/detail.cfm?id=3212479


Why is Python slow multithreading?
Pure Python programs are conditioned by the GIL (the Global Interpreter Lock) which
effectively serializes parallel execution
To parallelize code we must run multiple processes, where shared memory is especially slow,
which, in turn, slows down compute-bound programs

Take away

Avoid running compute-bound parallel codes in Python. Maybe choose C?

Source: Global Interpreter Lock. Python Wiki. Last edit in 2017, accessed in 2019.

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 12 / 31

https://wiki.python.org/moin/GlobalInterpreterLock


Constraint language programming
We solve the equation SEND+MORE=MONEY where each letter represents a digit in Prolog using a
constraint language programming module:

sendmore(Digits) �-           % Source: https://en.wikipedia.org/wiki/Constraint_programming
   Digits = [S,E,N,D,M,O,R,E],     % Create variables
   Digits ins 0..9,                % Associate domains to variables
   S #\= 0,                        % Constraint: S must be different from 0
   M #\= 0,
   all_different(Digits),          % all the elements must take different values
                1000*S + 100*E + 10*N + D     % Other constraints
              + 1000*M + 100*O + 10*R + E
   #= 10000*M + 1000*O + 100*N + 10*E + Y,
   label(Digits).                  % Start the search

Take away

Some problems are more amenable to certain programming languages.

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 13 / 31



How are languages different?
1. The implementation matters: A language implementation may be conditioned (faster/slower)

in certain contexts
2. The model matters: Certain problems are simpler/more ef�cient to write in speci�c languages
3. The domain matters: A technology your business needs may only be available in some

language (say TensorFlow in Python)

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 14 / 31



Why learn different languages?
Learn at least one new language every year.

Source: The Pragmatic Programmer. Andrew Hunt and David Thomas. 1999.
Why should you care

Deeper understanding of the differences and the similarities between languages
Learn different approaches to the same problems
More job opportunities
Better technology choices (some technologies are only available in speci�c languages)

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 15 / 31

https://pragprog.com/book/tpp/the-pragmatic-programmer


Why functional programming?

16 / 31



What is functional programming?
Mutation is discouraged
Higher-order functions serve as a generalization device

Why should we care?
These features help designing correct, elegant, and ef�cient software
Functional programming languages are heavily favoured by PL researchers, which means they
serve as a test bed for PL design. Functional programming is close(r) to math formalism, thus
implementation is usually simpler in functional programming languages.
Functional programming is trendy! C++/Java/C#/Python/Javascript are all incorporating
functional programming idioms.

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 17 / 31



Why should we discourage mutation?
Simpler to reason about: no surprises passing a data-structure to functions/objects
Concurrency-ready: read-only means no race conditions (and no locks), which leads to simpler,
faster code

Who is using it?
immutable.js for JavaScript by Facebook
vavr, PCollections, the Scala runtime, and the Closure runtime for Java
immer for C++
immutable collections for .NET

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 18 / 31



Why should we use higher-order functions?
Simpler interface than objects (which method? which order?)
Can be combined effectively (frameworks on combining functions)

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 19 / 31



A researcher's Petri Dish
Most programming languages features started out in functional programming languages.

Garbage collection (LISP, 1959)
Generics (Hindley-Milner-Damas type system 1969/1978, implemented in ML in ~1977 )
Higher-order functions (lambda expressions in C++, C#, Java, Python) introduced in LISP
(1959) and in ISWIM (1966)
Type inference, e.g., auto in C++, var in C# (Hindley-Milner-Damas)
Algebraic-data types and pattern matching (1970s in Hope)
Recursion

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 20 / 31

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5276&rep=rep1&type=pdf
http://www.cs.cmu.edu/~crary/819-f09/Landin66.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.8135&rep=rep1&type=pdf


A new wave of languages
Many new interesting programming languages

Swift: next-generation programming language for Apple systems
Rust: functional programming meets system programming
F#: an ML derivate for the .NET ecosystem
Elixir: highly-available distributed system
Clojure: a LISP-in�uenced language for the JVM and the web

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 21 / 31



How are we using functional programming ?
OCaml: web development (Facebook), distributed systems (Docker), �nance (Bloomberg,
Aesthetic Integration), hardware virtualization (Citrix)
Haskell: veri�cation (Facebook), distributed systems (Google), compilers (Intel), distributed
systems (Microsoft)
Erlang: communication (WhatsApp), ads (AddRoll), web backend (Bet365), �nance (Goldman
Sachs)
Elixir: spam prevention (Pinterest), micro services (Lonely Planet)
F#: data analysis (Kaggle), trading (Credit Suisse), gaming backend (GameSys)
Racket game scripting (Naughty Dog), image processing (YouPatch)
Scala middleware (Twitter), database (Net�ix), microservices (Tumblr), web (The Guardian)

Honorable mentions

ReasonML, Elm, PureScript, ClojureScript

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 22 / 31

http://www.ocaml.org/learn/companies.html
https://wiki.haskell.org/Haskell_in_industry
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://fsharp.org/testimonials/
https://www.reddit.com/r/Racket/comments/5g8xse/are_there_any_examples_of_racket_being_used_in/
https://alvinalexander.com/scala/whos-using-scala-akka-play-framework
https://reasonml.github.io/
https://elm-lang.org/
http://www.purescript.org/
https://clojurescript.org/


Mutable environments

23 / 31



Summary
Today we implement a mutable environment.

Constructors

Empty: The empty, root environment.
Put:  updates an existing environment  upon de�ning a variable. Returns the
same frame, and updates the heap.
Push:  creates a new environment  by extending environment 
with one binding . Returns the new environment.

Selectors

Variable Lookup:  Looks up variable  in the bindings of the current frame, otherwise
recursively looks up the parent frame.

E ← [x := v] E

E  ←2 E  +1 [x := v] E  2 E  1

x = v

E(x) x

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 24 / 31



Environment visualization

(handle 0) (handle 0)

(handle 1) (handle 2)

Source: SICP book Section 3.2

Environment operations

Environment example

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 25 / 31



Environment visualization

(handle 0) (handle 0)

(handle 1) (handle 2)

Source: SICP book Section 3.2

Environment operations

E0 <� [x �= 3]
E0 <� [y �= 5]
E1 <� E0 + [z �= 6]
E1 <� [x �= 7]
E2 <� E0 + [m �= 1]
E2 <� [y �= 2]

Environment example

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 25 / 31



Constructors: Root
The root environment

(define root-alloc (heap-alloc empty-heap root-frame))
(define root-environ (eff-result root-alloc))
(define root-mem (eff-state root-alloc))

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 26 / 31



Example

E0 <� [x �= 3]
E0 <� [y �= 5]

In Racket

Constructors: Put

(define (environ-put mem env var val)
  (define new-frm (frame-put (heap-get mem env) var val))
  (heap-put mem env new-frm))

E ← [x := v]

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 27 / 31



Example

E0 <� [x �= 3]
E0 <� [y �= 5]

In Racket

(define E0 root-environ)
(define m1
  (environ-put
    (environ-put root-heap E0 (s:variable 'x) (s:number 3))
    E0 (s:variable 'y) (s:number 5)))

Constructors: Put

(define (environ-put mem env var val)
  (define new-frm (frame-put (heap-get mem env) var val))
  (heap-put mem env new-frm))

E ← [x := v]

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 27 / 31



Example

E1 <� E0 + [z �= 6]
E1 <� [x �= 7]

In Racket

Constructors: Push

(define (environ-push mem env var val)
  (define new-frame (frame env (hash var val)))
  (heap-alloc mem new-frame))

E  ←2 E  +1 [x := v]

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 28 / 31



Example

E1 <� E0 + [z �= 6]
E1 <� [x �= 7]

In Racket

(define e1-m2 (environ-push m1 E0 (s:variable 'z) (s:number 6)))
(define E1 (eff-result e1-m2))
(define m2 (eff-state e1-m2))
(define m3 (environ-put m2 E1 (s:variable 'x) (s:number 7)))

Constructors: Push

(define (environ-push mem env var val)
  (define new-frame (frame env (hash var val)))
  (heap-alloc mem new-frame))

E  ←2 E  +1 [x := v]

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 28 / 31



Example

E0 <� [x �= 3]
E0 <� [y �= 5]
E1 <� E0 + [z �= 6]
E1 <� [x �= 7]
E2 <� E0 + [m �= 1]
E2 <� [y �= 2]

In Racket

Continuing the example

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 29 / 31



Example

E0 <� [x �= 3]
E0 <� [y �= 5]
E1 <� E0 + [z �= 6]
E1 <� [x �= 7]
E2 <� E0 + [m �= 1]
E2 <� [y �= 2]

In Racket

(define E0 root-environ)
(define m1
  (environ-put
    (environ-put root-heap E0 (s:variable 'x) (s:number 3))
    E0 (s:variable 'y) (s:number 5)))
(define e1-m2 (environ-push m1 E0 (s:variable 'z) (s:number 6)))
(define E1 (eff-result e1-m2))
(define m2 (eff-state e1-m2))
(define m3 (environ-put m2 E1 (s:variable 'x) (s:number 7)))
(define e2-m4 (environ-push m3 E0 (s:variable 'm) (s:number 1)))
(define E2 (eff-result e2-m4))
(define m4 (eff-state e2-m4))
(define m5 (environ-put m4 E2 (s:variable 'y) (s:number 2)))

Continuing the example

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 29 / 31



Selector: Variable lookup

(define (environ-get mem env var)
  (define frm (heap-get mem env))    ;; Load the current frame
  (define parent (frame-parent frm))  ;; Load the parent
  (define result (frame-get frm var)) ;; Lookup locally
  (cond
    [result result] ;; Result is defined, then return it
    [parent (environ-get mem parent var)] ; If parent exists, recurse
    [else (error (format "Variable ~a is not defined" var))]))

Example

(check-equal? (environ-get m5 E2 (s:variable 'y)) (s:number 2))
(check-equal? (environ-get m5 E2 (s:variable 'm)) (s:number 1))
(check-equal? (environ-get m5 E2 (s:variable 'x)) (s:number 3)))

E(x)

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 30 / 31



Environment visualization

(handle 0) (handle 0)

(handle 1) (handle 2)

Source: SICP book Section 3.2

(define parsed-m5
   (parse-mem
     '([E0 . ([x . 3] [y . 5])]
       [E1 . (E0 [x . 7] [z . 6])]
       [E2 . (E0 [m . 1] [y . 2])])))
; Which is the same as creating the following data-structure
(heap
  (hash
    (handle 0)
    (frame #f
      (hash (s:variable 'y) (s:number 5) (s:variable 'x) (s:number 3)))
    (handle 2)
    (frame (handle 0)
      (hash (s:variable 'y) (s:number 2) (s:variable 'm) (s:number 1)))
    (handle 1)
    (frame (handle 0)
      (hash (s:variable 'z) (s:number 6) (s:variable 'x) (s:number 7)))))

(check-equal? parsed-m5 m5)

A language of environments

CS450  ☽  Mutable environments  ☽  Lecture 15  ☽  Tiago Cogumbreiro 31 / 31


