CS450

Structure of Higher Level Languages
Lecture 13: Shared mutable state and immutability

Tiago Cogumbreiro

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Policy on academic honesty M

1. Any two students sharing code in a submission will void both submissions.

2. Any repeated incident will be reported to the department, and the student will fail the course
with an F.

Students may choose to withdraw any homework submission that has not been voided.
Please read on...
Acknowledging Intellectual Debts. Nurit Haspel, Ethan Bolker, Carl Offner.

Student conduct

Students are required to adhere to the University Policy on Academic Standards and Cheating,
to the University Statement on Plagiarism and the Documentation of Written Work, and to the
Code of Student Conduct as delineated in the catalog of Undergraduate Programs. The Code is

available online at: www.umb.edu/1ife_on_campus/policies/code/

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

https://www.cs.umb.edu/cs450/honesty.pdf
http://www.umb.edu/life_on_campus/policies/code/

Anti-Cheating Software M

Moss Results

Thu Mar 21 09:40:13 PDT 2019
Options -1 scheme -m 10

Scheme files

[How to Read the Results | Tips | FAO | Contact | Submission Scripts | Credits]

File 1 File 2 Lines Matched
assignment 154296 export/submission .rkt (58%) assignment 154296 export/submission .kt (60%) 97
assignment 154296 export/submission Tkt (52%) assignment 154296 export/submission Tkt (51%) 85
assignment 154296 export/submission .rkt (50%) assignment 154296 export/submission .kt (47%) 74
assignment 154296 export/submission Tkt (99%) assignment 154296 export/submission Tkt (99%) 113
assignment 154296 export/submission .rkt (24%) assignment 154296 export/submission .kt (34%) 66
assignment 154296 export/submission .rkt (32%) assignment 154296 export/submission .rkt (39%) 45
assignment 154296 export/submission Tkt (20%) assignment 154296 export/submission Tkt (29%) 61
assignment 154296 export/submission .rkt (20%) assignment 154296 export/submission .rkt (30%) 61
assignment 154296 export/submission Tkt (28%) assignment 154296 export/submission .kt (35%) 35
assignment 154296 export/submission .rkt (27%) assignment 154296 export/submission .kt (35%) 33

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Cheating sample

A,

UMASS
BOSTON

assignment_154296_export/submission Tkt assignment export/submissio

= = o I - - o

(99%) (99%)
2-114 — 2108
assignment 154296 export/submission rkt assignment 154296 export/submission_ Tkt
#lang racket #lang racket
(require "ast.rkt") (require "ast.rkt")
(require "hwl.rkt") (require "hwl.rkt")
(require rackunit) (require rackunit)
(provide (all-defined-out)) (provide (all-defined-out))
;use if for number 1 ;: Exercise 1l.a: Read-write cell
; ;: Solution has 3 lines.
(define (rw-cell x)
;; Exercise l.a: Read-write cell ((lambda (a)
;7 Solution has 3 lines. (lambda (b) (if (equal? 1 (length b))
(define (rw-cell x) (rw-cell (car b))
((lambda (a) a)))
(lambda (b) (if (equal? 1 (length b)) x))
{(rw-cell (car b))

a)))
x))

;; Exercise 1.b: Read-only cell
;; Solution has 4 lines.
(define (ro-cell x)
((lambda (a)
(lambda (b) (if (equal? 1 (length b))

[ro-cell al

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

i Exercise 1.b: Read-only cell
;; Solution has 4 lines.
(define (ro-cell x)
({lambda (a}
(lambda (b) (if (equal? 1 (length b))
(ro-cell a)
a)))
x))

Today we will... 7

1. Study adding define to our language
2. Introduce mutation in an immutable setting

3. Introduce Racket's contracts

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

A p-calculus: A-calculus with definitions i

Syntax

t :==e|t;t| (define z e)

ex=v|x|(e1e)]| Ax.t viu=n|(F,Azx.t) | void

« New grammar rule: ferms
e A program is now a non-empty sequence of terms

« Since we are describing the abstract syntax, there is no distinction between a basic and a
function definition

 Since evaluating a definition returns a void, we need to update values

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Values 7

BOSTON

I We add void to values.
viu=n|(E,zx.t) | void

Racket implementation

(define (s:value? v) (or (s:number? v) (s:closure? v) (s:void? v)))
(struct s:number (value) #:transparent)

(struct s:closure (env decl) tt:transparent)

(struct s:void () #:transparent)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

EXpressions 7

BOSTON

IfEXpressknnsrenunnyuHChanged.
ex=v|x| (e e) | .t
Racket implementation

(define (s:expression? e) (or (s:value? e) (s:variable? e) (s:apply? e) (s:lambda? e)))
(struct s:variable (name) #:transparent)

(struct s:apply (func args) ft:transparent)

(struct s:lambda (params body) it:transparent)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Terms M

I We implement terms below.
t :=e|t;t| (define z €)
Racket implementation
(define (s:term? t) (or (s:expression? t) (s:seq? t) (s:define? t)))

(struct s:seq (fst snd) #:transparent)
(struct s:define (var body) #:transparent)

The body of a function declaration is a single term

The body is no longer a list of terms!

A sequence is not present in the concrete syntax, but it simplifies the implementation and
formalism (see reduction)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Parsing datum into AST terms M

o Our parser handles multiple terms in the body of a function declaration.

o Function s:parsel parses a single term.

(check-equal?
(s:parsel '(lambda (x) x y z))
(s:lambda (list (s:variable 'x))
(s:seq (s:variable 'x)
(s:seq (s:variable 'y) (s:variable 'z)))))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Parsing datum into AST terms M

I The body of a function can have one or more definitions, values, or function calls.

(check-equal?
(s:parsel '(lambda (x) (define x 3) x))
(s:lambda (list (s:variable 'x))
(s:seq (s:define (s:variable 'x) (s:number 3)) (s:variable 'x))))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Parsing datum into AST terms M

e Parsing supports function definitions.

e Function s:parse can parse a sequence of terms, which corresponds to a Racket program.

(check-equal?
(s:parse '[(define (f x) x) (f 1)])
(s:define (s:variable 'f) (s:lambda (list (s:variable 'x)) (s:variable 'x)))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

A p-calculus: A-calculus with definitions i

Semantics « Kvaluating a define extends the environment
with a new binding

ellg v

(E-exp) e Sequencing must thread the environments
el (E,v)
€ UE (Y
E-def
(defineze) g (E|x — v|,void) (E-def)
t E t b
1 VB, (E2,v1) 2 Im, (E3,v2) (E-seq)

ti;t2 Vg, (Es,v2)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Please, use your Rule Sheet in the following examples:
vigv (E-val)
z g B(z) (E-var)
Azt g (B, Az.t) (E-lam)

er g (Ep, Az.tp) eq VB Vg ty VB, [x—va] Vb

(ef €a) 4 v (E-app)
- lfjf quv) (E-exp)
(define z €) Ejf;[a; S ol voia) Bde)
s Ban) b bo Bu) (g geq)

tl;t2 bE1 (E37 ’Ug)

Fvaluating define m

Example 1

| Consider the following program

(define a 20)
(define b (lambda (x) a))

(b 1)

I What is the output of this program?

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fvaluating define M

Example 1

| Consider the following program

(define a 20)
(define b (lambda (x) a))

(b 1)
I What is the output of this program? The output is: 20

Let us try and evaluate this program with our Ap semantics!

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 1: step 1 m

INnput

Environment: []
Term: (define a 20)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 1: step 1 m

INnput Output

Environment: [] Environment: [(a . 20)]

Term: (define a 20) Value: #<void>
Evaluating

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 1: step 1 m

INnput Output

Environment: [] Environment: [(a . 20)]

Term: (define a 20) Value: #<void>
Evaluating

20 Y 20 (E-val)

E-def
(define a 20) J¢ ({a : 20}, void) ©

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fxample 1: step 2 m

INnput

Environment: [(a . 20)]
Term: (define b (lambda (y) a))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fxample 1: step 2 m

INnput Output
Environment: [(a . 20)] Environment: [
Term: (define b (lambda (y) a)) (a . 20)
: (b . (closure [(a . 20)] (lambda (y) a)))

Expression: #<void>

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

A,

Fxample 1: step 2 s
INnput Output
Environment: [(a . 20)] Environment: [
Term: (define b (lambda (y) a)) (a . 20)
: (b . (closure [(a . 20)] (lambda (y) a)))

Expression: #<void>
Evaluating

Ay.a a0y ({@: 20}, Ay.a) (E-lam)

E-def
(define b Ay.a) {400y ({a:20,b: ({a: 20}, Ay.a)}, void) de

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fxample 1: step 3 m

Input

Environment: [
(a . 20)

(b . (closure [(a . 20)] (lambda (y) a)))

Term: (b 1)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fxample 1: step 3 m

Input Output
Environment: [Environment: [
(a . 20) (a . 20)
(b . (closure [(a . 20)] (lambda (y) a))) (b . (closure [(a . 20)] (lambda (y) a)))
Term: (b 1) Expression: 20
Evaluation

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fxample 1: step 3 m

Input Output
Environment: [Environment: [
(a . 20) (a . 20)
(b . (closure [(a . 20)] (lambda (y) a))) : (b . (closure [(a . 20)] (lambda (y) a)))
Term: (b 1) Expression: 20
Evaluation
E(b) = ({a: 20}, \y.a) F(a) =20
E-var E-val E-var
blrg ({a:20},)\y.a) 1Jp1 allr 20
E-app
(b1) I 20
E-exp
(b1) V= (F,20)
where

E={a:20,b: ({a: 20}, \y.a)}
F=EFEly—1]={a:20,b: ({a:20},Ay.a),y: 1}

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fvaluating define m

Example 2

| Consider the following program

(define b (lambda (x) a))
(define a 20)

(b 1)

I What is the output of this program?

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Fvaluating define M

Example 2

| Consider the following program

(define b (lambda (x) a))
(define a 20)

(b 1)
I What is the output of this program? The output is: 20

Let us try and evaluate this program with our Ap semantics!

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 1 m

INnput

Environment: []
Term: (define b (lambda (y) a))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 1 m

INnput Output

Environment: [] Environment: [

Term: (define b (lambda (y) a)) (b . (closure [] (lambda (y) a))
]

Expression: #<void>

Evaluation

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 1 m

INnput Output

Environment: [] Environment: [

Term: (define b (lambda (y) a)) (b . (closure [] (lambda (y) a))
]

Expression: #<void>

Evaluation

My.allp ({1 Ay.a) (E-lam)

(define b \y.a) Up ({b: ({3, \y.a)}, void) E-def

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 2 m

INnput

Environment: [
: (b . (closure [] (lambda (y) a))

Term: (define a 20)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 2 m

INnput Output
Environment: [Environment: [
(b . (closure [] (lambda (y) a)) (a . 20)
] (b . (closure [] (lambda (y) a))
Term: (define a 20)]

Expression: #<void>

Evaluation

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 2 m

INnput Output
Environment: [Environment: [
(b . (closure [] (lambda (y) a)) (a . 20)
] (b . (closure [] (lambda (y) a))
Term: (define a 20)]

Expression: #<void>

Evaluation

20 $n:((3, 0000 20 (E-val)

E-def
(define a 20) U3 apa) (10: (1}, Ay.a),a : 20}, void)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 3 m

INnput

Environment: [
(a . 20)
(b . (closure [] (lambda (y) a))

]
Term: (b 1)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Example 2: step 3 M

INnput Output
Environment: [Environment: [
(a . 20) (a . 20)
(b . (closure [] (lambda (y) a)) (b . (closure [] (lambda (y) a))
]]
Term: (b 1) Expression: error! a is undefined

Insight

When creating a closure we copied the existing environment, and therefore any future updates
are forgotten.

The semantics of Ap is not enough! We need to introduce a notion of mutation.

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

How do Im

Dler

without mu

tab

nent mutation

e constructs?

Shared "mutable” state

wIith Immutable data-structures

Why, though? 7

BOSTON

Beneftits

e A necessity if we use a language without mutation (such as Haskell)

e Parallelism: A great way to implement fast and safe data-structures in concurrent code (look
up copy-on-write)

e Development: Controlled mutation improves code maintainability

e Memory management: counters the problem of circular references (notably, useful in C++ and
Rust, see example)

I Encoding shared mutable state with immutable data-structures is a great skill to have.

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

https://en.wikipedia.org/wiki/Copy-on-write
https://stackoverflow.com/questions/34747464/

Heap ﬁg

We want to design a data-structure that represents a keap (a shared memory buffer) that allows
us to: allocate a new memory cell, load the contents of a memory cell, and update the contents of
a memory cell.

Constructors

o empty-heap returns an empty heap
o (heap-alloc h v) creates a new memory cell in heap h whose contents are value v

o (heap-put h r v) updates the contents of memory handle r with value v in heap h

Selectors

o (heap-get h r) returns the contents of memory handle r in heap h

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Heap usage ?//l

(define h empty-heap)
(define r (heap-alloc h "foo"))

I What should the return value of heap-alloc?

e Should heap-alloc return a copy of h extended with "foo"? But then, how to we access the
memory cell pointing to "foo"?

o Should heap-alloc return a handle to the new memory cell? But, since there is no mutation,
how can we access the new heap?

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Heap usage ?//l

(define h empty-heap)
(define r (heap-alloc h "foo"))

I What should the return value of heap-alloc?

e Should heap-alloc return a copy of h extended with "foo"? But then, how to we access the
memory cell pointing to "foo"?

o Should heap-alloc return a handle to the new memory cell? But, since there is no mutation,
how can we access the new heap?

I Function heap-alloc must return a pair eff that contains the new heap and the memory handle.

(struct eff (state result) #:transparent)

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Heap usage example M

Spec

(define h1 empty-heap)

(define r (heap-alloc h1 "foo"))
(define h2 (eff-state r))

(define x (eff-result r))
(check-equal? "foo" (heap-get h2 x))
(define h3 (heap-put h2 x "bar"))
(check-equal? "bar" (heap-get h3 x))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Handles must be unique M

We want to ensure that the handles we create are unique, otherwise allocation could overwrite
existing data, which is undesirable.

Spec

(define h1 empty-heap)

(define r1 (heap-alloc h1 "foo"))
(define h2 (eff-state r1))

(define x (eff-result r1))

(define r2 (heap-alloc h2 "bar"))
(define h3 (eff-state r2))

(define y (eff-result r2))
(check-not-equal? x v)

(check-equal? "foo" (heap-get h3 x))
(check-equal? "bar" (heap-get h3 y))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

How can we Implement

a memory handle?

30/36

A simple heap implementation m

Let a handle be an integer

Recall that the heap only grows (no deletions)

A the handle matches the number of elements already present in the heap

When the heap is empty, the first handle is O, the second handle is 1, and son..

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Heap: A solution M

« We use a hash-table to (struct heap (data) #:transparent)
represent the heap because (define empty-heap (heap (hash)))
it has a faster random- (struct handle (id) tt:transparent)
access than a linked-list (struct eff (state result) it:transparent)
(where lookup is linear on (defing (heap-alloc h v)
the size of the list). (define data (heap-data h))

(define new-id (handle (hash-count data)))

« We wrap the hash-table in (define new-heap (heap (hash-set data new-id v)))

a struct, and the handle (eff new-heap new-id))
(which is a number) in a (define (heap-get h k)

struct, for better error (hash-ref (heap-data h) k))
messages. And because it (define (heap-put h k v)
helps maintaining the (define data (heap-data h))
code. (cond

[(hash-has-key? data k) (heap (hash-set data k v))]
[else (error "Unknown handle!")]))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Contracts

33/36

Contracts ?//l

I Adding some sanity to highly dynamic code.

e Design-by-contract: idea pioneered by Bertrand Meyer and pushed in the programming
language Eiffel, which was recognized by ACM with the Software System Award in 2006.

« Contracts are pre- and post-conditions each unit of code must satisfy (e.g., a function)
« In some languages, notably F* and Dafny, pre- and post-conditions are checked at compile

time!
Bibliography

Design by Contract, in Advances in Object-Oriented Software Engineering, eds. D. Mandrioli and B. Meyer, Prentice Hall,
1991.

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Contracts in Racket ?//l

I Use define/contract rather than define to test the validity of each parameter and the return
value.

« The = operator takes a predicate for each argument and one predicate for the return value
For instance: (= symbol? real? string?) declares that the first parameter is a symbol, the
second parameter is numeric, and the return value is a string.

Example

(define/contract (f x v)

(= symbol? real? string?)
(format "(~a, ~a)"))

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

Contracts examples ?//l

Read up on Racket's manual entry on: data-structure contracts

o real? for numbers

any/c for any value

1list? for a list

listof number? for a list that contains numbers

cons? for a pair

(or/c integer? boolean?) either an integer or a boolean

(and/c integer? even?) an integer that is an even number

(cons/c number? string?) a pair with a number and a string

(hash/c symbol? number?) a hash-table where the keys are symbols and the keys are
numbers

CS450) Shared mutable state and immutability) Lecture13) Tiago Cogumbreiro

https://docs.racket-lang.org/reference/data-structure-contracts.html

