CS450

Structure of Higher Level Languages
Lecture 27: Semester Wrap Up & Parallelism

Tiago Cogumbreiro

Today we will... 7

1. Review what we learned in CS450

2. Remind anonymous feedback

3. Answer Homework Assignment Questions

4. Learn about functional parallelism with futures
5. Fill-in the Course Evaluation Form

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

My goal with CS450 was to teach you ... M

1. Fundamental concepts behind most programming languages

e functional programming, delayed evaluation, control flow and exceptions, object oriented
systems, monads, macros, pattern matching, variable scoping, immutable data structures

2. A framework to describe language concepts

o A-calculus and formal systems to specify programming languages

 functional programming and monads to implement specifications

3. A methodology to understand complex systems

 (formally) specify and implement each programming language feature separately
« understand a complex system as a combination of smaller simpler systems

« implement and test features independently

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Plazza review m

e 30 students online on average

e 224 questions asked; 100% questions were answered; instructor answered 88% (198
questions)

e 1562 contributions (posts, edits, responses, follow ups, comments); instructor made 40% (668
contributions)

Maximum student's

e contributions made: 123

questions asked: 36

posts viewed: 225

days online: 97

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

What | would like to improve in CS450 7

1. How to test code and ask questions?
o Hardly anyone shared tests in the forum. Should tests be an exercise?

o Questions are incomplete (lack stack traces, are incomplete). Should I teach how to ask
questions?

2. Tests do not prove correctness!
o If a solution breaks because of a new test, this solution was incomplete!
o The autograder is your friend and so are tests.
3. Did the students really learn the assignments, or just passed learned to pass the tests?
o Add design document per homework assignment?
o Should we have a midterm?
4. Should we improve homework text?
o Succinct homework assignments to motivate participation, yet not everyone happy.

o Should we add labs to support homework assignments?

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Anonymous Feedback

Open-ended suggestions to your instructor

(a

optional and anonymous)

tinyurl.com/cs450-feedback

Or,emailme: T1ago.Cogumbrelrogumb.edu

https://forms.gle/iGdJ8ajPNikTAdu49
mailto:Tiago.Cogumbreiro@umb.edu

Homework assignment questions

71/23

HW /7 question ?//l

I Thread 337: What is the major difference between an eff and an eff-op?

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=337

HW /7 question ?//l

I Thread 337: What is the major difference between an eff and an eff-op?

Answer

Let us look at hw7-util. rkt:

(struct eff (state result) #:transparent)
(struct eff-op (func))

o eff is the return of effectful operations (introduced in Lecture 13; revisited in Lectures 15
and 17)

« eff-o0p a structure that holds an effectful operation, takes a state (eg, a heap) and produces
an eff (introduced in Lecture 18, slide 29)

Examples of effectful operations eff-op: eff-bind, eff-pure, env-put, env-get, env-
push

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=337

HW /7 question ?//l

I Thread 342: How do I test for if? How do I know if the term is curried?

ec g #t » er vy (E-if—f) e. lg v v=#f » e v
(((if ec) e:) ef) Vg vy (((if ec) er) ef) Up v

(E-if-t)

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=342

HW /7 question ?//l

I Thread 342: How do I test for if? How do I know if the term is curried?

ec g #f » es | vy . e. Vg v v=#f » e v .

(E-if-f) (E-if-t)
(Gfe) e)ep) bmvy ((if e.) er) e7) V5 v :
Answer

1. Use pattern matching with nested a pattern before the branch for apply. See Thread 300.

2. Terms being evaluated are always curried.

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=342
https://piazza.com/class/jrgr3bt8zqn2ht?cid=300

HW& question ?//l

I Thread 334: What does A(this,x - - -).[e] mean?

J[function(z---) {e}] =
alloc {"$code" : A(this,x---).J[e], "prototype" : alloc {}}

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=334

HW& question ?//l

I Thread 334: What does A(this,x - - -).[e] mean?

J[function(z---) {e}] =
alloc {"$code" : A(this,x---).J[e], "prototype" : alloc {}}

Answer

Generate a lambda, whose

1. parameters are this, x - - -, so translate the original parameters x, - - - and add a variable this

2. body is the translation of e

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=334

HWE& question

I Thread 338: What is js- (let ([js-set!

(lambda (o f d)

A,

UMASS
BOSTON

set!? (Lecture 26, slide 7) (begin (set! o (update-field (deref o) f d)) d

(alloc (object
["$code"
(lambda (this x y)
(begin (js-set! this "x"
(js-set! this "y"
["prototype" (alloc (object))]

X)
y)))]
)))

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=338

HW& question M

1G — |
I Thread 338: What is js- (lﬁiaégéz ?gt% d4)
set!? (Lecture 26, slide 7) (begin (set! o (update-field (deref o) f d)) d
(alloc (object
["$code"
(lambda (this x y)
(begin (js-set! this "x" x)
(js-set! this "y" y)))]
["prototype" (alloc (object))])))

Answer

« The generated code did not fit the slide, think of it as the translation of (set! o.f a).I
have highlighted in yellow the code being generated.

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=338

HW& question ?//l

I Thread 343: What is the difference between $proto and prototype?

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=343

HW 8 question 7

BOSTON

I Thread 343: What is the difference between $proto and prototype?

Answer

See Lectures 24 and 25.

1. $proto is a field used for looking up the super object (the parent); works on any object. In
JavaScript thisis __proto__, in LambdaJS this is $proto.

2. prototype is the field of every function, used by new to initialize the $proto field of
created objects

function A () {this.a = 1;}

A.prototype = {"_ proto__": {"b": 10, "c": 10, "a": 10}, "b": 20}
a = new A;

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

https://piazza.com/class/jrgr3bt8zqn2ht?cid=343

-unctional parallelism

13/23

Parallelism with asynchronous evaluation m

I The idea is similar to delay/force

1. (future t) evaluates a thunk t in another task, possibly by another processor
2. Calling (future t) returns a future value f, a place holder to a parallel computation

3. One can await the termination of the parallel task with (touch f), which blocks the current
task until the task evaluating the future thunk terminates. Consecutive (touch f) are

nonblocking.

(define f (thunk (sleep 2) 99))
(assert-equals? (touch f) 99)
(touch f)

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

A parallel fold m

(define (par-reduce f init v lo hi)
(if (< (- 1o hi) threshold)

(foldl f init (vector-view v lo hi))

(letx ([mid (floor (+ (/ 1o 2) (/ hi 2)))]
[1 (future (thunk (par-reduce f init v lo mid)))]
[r (par-reduce f init v mid hi)])

(f (touch 1) r))))
Map-reduce example

(f
(f
(foldl fO [0 ... 64])
(foldl f 0 [64 ... 128]))
(foldl f @ [128 ... 1921))

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Example of parallel reduce m

(define (f x y)

(/ (- (+ (- (* x2) yy25) xy56)x 36)2))
(define (do-par 1)

(par-reduce f 0 (list—vector 1)))
(define (do-seq 1)

(foldl f 0 1))

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Example of parallel reduce M

(define (f x y)

(/ (- (+ (- (* x2) yy25) xy 56)x 36) 2))
(define (do-par 1)

(par-reduce f 0 (list—vector 1)))
(define (do-seq 1)

(foldl f 0 1))

Output

Processing a list of size: 10000

* Serial version %
Throughoutput: 25 elems/ms
Mean: 402.03+9.89ms

* Parallel version =*
Throughoutput: 25 elems/ms
Mean: 392.76+13.2ms

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Parallelism Iin Racket

e

17/23

L et us try Clojurel

Parallel reduce m

(defn do-reduce [f 1 treshold]
(proxy [RecursiveTask] []
(compute []
(if (< (count 1) treshold)

(reduce f 0 1)

(let [half (quot (count 1) 2)
f1 (do-reduce f (subvec 1 0 half) treshold)
f2 (do-reduce f (subvec 1 half) treshold)]
(.fork f2)

(f (.compute f1) (.join f2)))))))

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo m

Clojure 1.10
OpendDK 1.8.0_191
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

4 cores
list with 1,000,000 elements

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo m

e Clojure 1.10
OpendDK 1.8.0_191
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

4 cores
list with 1,000,000 elements

Serial version

"Elapsed time: 2769.94558 msecs"
Parallel version

"Elapsed time: 755.341055 msecs"

3./x|ncreasel

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo 2 ?//l

I Let us vary the parameter being used...

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo 2 m

I Let us vary the parameter being used...

Serial version

"Elapsed time: 101.96357 msecs"
Parallel version

"Elapsed time: 219.819163 msecs"

2.0x slower!

Parallel overhead is significant!

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo 3 7

I Let us vary the size of the data being used: 100,000 elements rather than 1,000,000

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

Demo 3 7

I Let us vary the size of the data being used: 100,000 elements rather than 1,000,000

Serial version

"Elapsed time: 179.724932 msecs"
Parallel version

"Elapsed time: 182.837934 msecs"

Data size is also significant!

CS450) Semester Wrap Up & Parallelism) Lecture 27) Tiago Cogumbreiro

I hank youl!

