
Middle East Technical University Department of Computer Engineering

CENG 334

Introduction to Operating Systems
Spring 2018-2019

Take Home Exam 2 - Mining Simulation

Due date: 28 04 2019, Sunday, 23:59

1 Objective
This assignment aims to familiarize you with the development of multi-threaded applications
and synchronization using C. Your task is to implement a simulator for mining (Turkish; maden
çıkarma) by simulating the different agents within the scenario using different threads. Towards
this end, you will be using mutexes, semaphores and condition variables for synchronizing the
different threads.
Keywords— Thread, Semaphore, Mutex, Condition Variable

2 Problem Definition
We want to simulate the processing of ores (Turkish; cevher) into ingots (Turkish: Külçe).
Specifically, iron, copper and coal ores are mined and processed to produce copper and steel
ingots

The processing is handled by four types of agents whose functions are described as below:

• Miners, produce ores at a certain rate and have three types: iron, copper and coal
miners. A miner has a limited capacity to store the ores it produced. It sleeps when its
storage gets full and wakes up, when ores are taken. There exists a maximum number
of ores that a miner can produce. Once a miner reaches this number, it quits.

• Smelters produce copper or iron ingots at a certain rate. A smelter uses 2 ores to
produce 1 ingot. Each smelter has a limited storage capacity for incoming ores. A
smelter quits, if it cannot not produce ingots (due to the lack of incoming ores) for a
certain duration.

• Foundries: produce steel ingots at a certain rate. A foundry uses 1 iron and 1 coal ore
to produce 1 steel ingot. Each foundry has a limited storage capacity for incoming iron
and coal ores. The storage capacities for both ore types are the same. A foundry quits
if it can not produce ingots (due to the lack of incoming ores) for a certain duration.

• Transporters: carry ores from miners to smelters or foundries. A transporter can
carry one ore at a time. The transporter iterates over the miners, and can loads ores
from them if the miner has ores in its storage.

1



Once an ore is loaded, the transporter carries it to producer (a smelter or a foundry)
based on the type of the ore. Copper ores are carried to smelters, Iron ore can be carried
either to smelters or foundries and, coal ores are carried to foundries. The transporter
iterates over smelters or foundries, and can drop ores to them if the smelter or foundry
has room in its storage. The transporters can drop ores to smelters or foundries while
they are producing ingots. The transporter should only iterate over available producers
with empty storage space or wait until one’s storage becomes available.
Transporters works until all the miners stop producing ores and have no ore left in their
storage. Transports should work miners in order and return to the first miner after
reaching the end.

2



You shall implement the four types of agents as threads and synchronize their activities. The
number of miner, transporter, smelter and foundry threads to be used will be given, and the
threads will be created at the beginning of the simulation. Initially, all miners will be empty
and transporters will have to wait for ores to be produced at the miners. After creation,
your main thread should wait for all the agents to finish before stopping. The pseudo-code of
simulation agent threads are given below:

Algorithm 1: Miner thread main routine
Data: ID, OreType, Capacity, Interval, TotalOre
CurrentOreCount← 0
FillMinerInfo(MinerInfo, ID, OreType, Capacity, CurrentOreCount)
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_CREATED)
while there are remaining ore in the mine do

WaitCanProduce ()
FillMinerInfo(MinerInfo, ID, OreType, Capacity, CurrentOreCount)
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_STARTED)
Sleep a value in range of Interval ± (Interval × 0.01) microseconds for production
CurrentOreCount← CurrentOreCount + 1
MinerProduced()
FillMinerInfo(MinerInfo, ID, OreType, Capacity, CurrentOreCount)
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_FINISHED)
Sleep a value in range of Interval ± (Interval × 0.01) microseconds for the next
round

end
MinerStopped ()
FillMinerInfo(MinerInfo, ID, OreType, Capacity, CurrentOreCount)
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_STOPPED)

The functions are explained below:

• WaitCanProduce: Wait until a storage space is cleared by a transporter and reserve a
storage space for the next ore.

• MinerProduced: Informs available transporters that there is avaliable ores in the miners
storage.

• MinerStopped: Signals the transporters waiting on the miners that this miner has
stopped producing. Transporters can keep loading remaining ores in the storage. If this
is the last miner, transporters waiting for a load wake up and terminate.

3



Algorithm 2: Smelter thread main routine
Data: ID, OreType, Capacity, Interval
ProducedIngotCount← 0
WaitingOreCount is the number of waiting copper ores in storage
FillSmelterInfo(SmelterInfo, ID, OreType, Capacity, WaitingOreCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_CREATED)
while True do

WaitUntilTwoOres() or timeout after 5 seconds
if timeout then

break
end
WaitingOreCount←WaitingOreCount− 2
FillSmelterInfo(SmelterInfo, ID, OreType, Capacity, WaitingOreCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_STARTED)
Sleep a value in range of Interval ± (Interval × 0.01) microseconds for production
ProducedIngotCount← ProducedIngotCount + 1
SmelterProduced()
FillSmelterInfo(SmelterInfo, ID, OreType, Capacity, WaitingOreCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_FINISHED)
end
SmelterStopped()
FillSmelterInfo(SmelterInfo, ID, OreType, Capacity, WaitingOreCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_STOPPED)

The functions are explained below:

• WaitUntilTwoOres: Wait until two ores arrive at its storage and reserve the storage
spaces until the production is finished. If storage of smelter already have two ores,
thread will directly continue, otherwise it will block.

• SmelterProduced: Signals available transporters that two storage spaces have been
opened in this smelter.

• SmelterStopped: Marks the smelter out of simulation so that transporters no more
deliver to this smelter.

4



Algorithm 3: Foundry thread main routine
Data: ID, Capacity, Interval
ProducedIngotCount← 0
WaitingIronCount is the number of waiting iron ores in storage
WaitingCoalCount is the number of waiting coal ores in storage
FillFoundryInfo(FoundryInfo, ID, Capacity, WaitingIronCount, WaitingCoalCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_CREATED)
while True do

WaitForOneIronOneCoal() or timeout after 5 seconds
if timeout then

break
end
WaitingIronCount←WaitingIronCount− 1
WaitingCoalCount←WaitingCoalCount− 1
FillFoundryInfo(FoundryInfo, ID, Capacity, WaitingIronCount, WaitingCoalCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_STARTED)
Sleep a value in range of Interval ± (Interval × 0.01) microseconds
ProducedIngotCount← ProducedIngotCount + 1
FoundryProduced()
FillFoundryInfo(FoundryInfo, ID, Capacity, WaitingIronCount, WaitingCoalCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_FINISHED)
end
FoundryStopped()
FillFoundryInfo(FoundryInfo, ID, Capacity, WaitingIronCount, WaitingCoalCount,
ProducedIngotCount)

WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_STOPPED)

The functions are explained below:

• WaitForOneIronOneCoal: Wait until one coal and one iron ore arrives at its storage
and reserve the storage spaces until the production is finished. If storage of foundry
already have these two ores, thread will directly continue, otherwise it will block.

• FoundryProduced: Signals available transporters that storage spaces for an iron and a
coal ore have been opened in this foundry.

• FoundryStopped: Marks foundry stopped so that transporters no more deliver to this
foundry.

5



Algorithm 4: Transporter thread main routine
Data: ID, Interval, Miners, Smelters, Foundries
FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, NULL, NULL,
TRANSPORTER_CREATED)
while there are active miners or have ores in their storage do

CarriedOre← None
Miner = WaitNextLoad()
Transporter thread miner routine
Producer = WaitProducer()
if Producer == Smelter then

Transporter thread smelter routine
end
else

Transporter thread foundry routine
end

end
FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, NULL, NULL,
TRANSPORTER_STOPPED)

The functions are explained below:

• WaitNextLoad: Waits for the next miner with available ore in its storage. If none of
the miners have ore available, it will wait. Otherwise assignment of the available ore
will be based on a search. If the last miner that a transporter loaded an ore from has
the ID k, it should start its search from the Miner with the ID k + 1 in cyclic manner.
Reserves the storage space so that other transporters cannot take this ore.

• WaitProducer: Waits for the next producer with available storage. Producers have
different priorities and they are from highest to lowest below:

– Producers waiting for the next ore to start production. For smelters this means
that, they already have one iron or copper ore in their storage and waiting for the
second one to start production. For foundry this means that, they have one coal
or iron ore in their storage and waiting for the other ore.

– Producers with empty storage space.

– If no producers have empty storage space for an ore type, thread will block until
a suitable producer finishes production of an ignot and release storage.

Once unblocked, storage is reserved so that no other transporters can fill that storage
space.

6



Algorithm 5: Transporter thread miner routine
Data: ID, Interval, Miner
FillMinerInfo(MinerInfo, Miner.ID, 0, 0, 0)
FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(MinerInfo, TransporterInfo, NULL, NULL,
TRANSPORTER_TRAVEL)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for travel
Miner.CurrentOreCount←Miner.CurrentOreCount− 1
CarriedOre←Miner.OreType
FillMinerInfo(MinerInfo, Miner.ID, Miner.OreType, Miner.Capacity,
Miner.CurrentOreCount)

FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(MinerInfo, TransporterInfo, NULL, NULL,
TRANSPORTER_TAKE_ORE)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for loading
Loaded(Miner)
Loaded: Signals the miner to inform that new storage space is available.

7



Algorithm 6: Transporter thread smelter routine
Data: ID, Interval, Smelter
FillSmelterInfo(SmelterInfo, Smelter.ID, 0, 0, 0)
FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, SmelterInfo, NULL,
TRANSPORTER_TRAVEL)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for travel
Smelter.Waiting ← Smelter.Waiting + 1
FillSmelterInfo(SmelterInfo, Smelter.ID, Smelter.Capacity, Smelter.Waiting,
Smelter.ProducedIngotCount)

FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, SmelterInfo, NULL,
TRANSPORTER_DROP_ORE)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for unloading
Unloaded(Smelter)

Unloaded: Signals the foundry to inform that an ore has been unloaded to its storage.

8



Algorithm 7: Transporter thread foundry routine
Data: ID, Interval, Foundry
FillFoundryInfo(FoundryInfo, Foundry.ID, 0, 0, 0, 0)
FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, NULL, FoundryInfo,
TRANSPORTER_TRAVEL)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for travel
if CarriedOre == IRON then

Foundry.WaitingIron← Foundry.WaitingIron+ 1
end
else

Foundry.WaitingCoal← Foundry.WaitingCoal + 1
end
FillFoundryInfo(FoundryInfo, Foundry.ID, Foundry.Capacity, Foundry.WaitingIron,
Foundry.WaitingCoal, Foundry.ProducedIngotCount)

FillTransporterInfo(TransporterInfo, CarriedOre)
WriteOutput(NULL, TransporterInfo, NULL, FoundryInfo,
TRANSPORTER_DROP_ORE)

Sleep a value in range of Interval ± (Interval × 0.01) microseconds for unloading
Unloaded(Foundry)

Unloaded: Signals the foundry to inform that an ore has been unloaded to its storage.

9



The simulation will be subjected to these constraints.

1. Initially, miners, transporters, smelters and foundries have no ores in their storage.

2. The duration a miner takes to produce an ore and the idle time between productions is
given as input.

3. Each miner has limited capacity to store the ores it produced. If it becomes full, it
should wait for a space in its storage to be opened.

4. Each miner has a limited amount of ore it can produce. When that number is reached,
it should quit.

5. Transporters can load an ore from a miner, while the miner is mining ores. Similarly, they
can unload an ore to a producers while the producer is producing ingots. Miner reserve
a storage during mining for its output. This storage is considered empty until mining
finishes. Similarly producers keep their ore input storage occupied until production of
ignot finishes.

6. No two transporters can load an ore from a miner or drop an ore to a producer at the
same time.

7. Transporters take a certain amount of time to travel between miner and producer agents
in the simulation. They also take certain amount of time when loading/unloading. This
duration is given to you as input.

8. Transporters should start their search from the first miner if it is the first call and next
miner in ID order for the subsequent iterations.

9. Transporters should quit if there are no active miners or miners with ores in their storage.

10. If a transporter loads a copper ore from a miner, it should carry it to a smelter. If it is
a iron ore, it should carry it to a smelter or foundry. There is no preference if they have
the same priority. It is up to you how you want to do it as long as you respect priority
of producers waiting for the second ore over producers with no ores. If the ore is coal,
it should be carried to a foundry.

11. The smelters require two ores to produce a single ingot. They should wait for ores to
be deposited without busy waiting.

12. Foundries require one iron and one coal to produce a steel ingot. They should wait for
ores to be deposited without busy waiting.

13. Smelters/foundries can produce their ingots while a transporter is depositing ore into
their storage. Similarly a transporter can deposit its ore into the storage while the
smelter/foundry is producing ingots, as long as there is space in their input storage.

14. It takes a certain duration for the smelters/foundries to produce their ingots. This
duration is given to you as input.

15. A foundry/smelter quits if it can not produce ingots (due to the lack of incoming ores)
for a certain duration. Note that, they may still have have left-over ores in their input
storage (e.g. one copper ore in a smelter or only coal/iron ores in a foundry).

10



3 Implementation Specifications
1. Each agent should be implemented as separate thread. When a agent thread created,

following function call should be made for every agent:

• Miner:
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_CREATED)

• Transporter:
WriteOutput(NULL, TransporterInfo, NULL, NULL,TRANSPORTER_CREATED)

• Smelter:
WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_CREATED)

• Foundry:
WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_CREATED)

2. You should call InitWriteOutput function before creating threads.

3. You can use usleep(time - (time*0.01) + (rand()%(int)(time*0.02))) to sleep
with a value in [0.99 ∗ time, 1.01 ∗ time] microseconds range.

4. Main thread should wait for every thread to finish before exiting. Each agent should
make the following call before exiting:

• Miner:
WriteOutput(MinerInfo, NULL, NULL, NULL, MINER_STOPPED)

• Transporter:
WriteOutput(NULL, TransporterInfo, NULL, NULL,TRANSPORTER_STOPPED)

• Smelter:
WriteOutput(NULL, NULL, SmelterInfo, NULL, SMELTER_STOPPED)

• Foundry:
WriteOutput(NULL, NULL, NULL, FoundryInfo, FOUNDRY_STOPPED)

5. Simulator should use WriteOutput function to output information, and no other infor-
mation should be printed.

11



4 Input Specifications
Information related to simulation agents will be given through standard input. First line will
contain number of mines (NM ) in the simulation. Following NM lines contain the properties
of the miner with ith ID (All IDs start from 1) in the following format:
- IM CM TM RM where

• IM is an unsigned integer representing the production and wait interval of the miner.
It is given in microseconds. The miner will sleep this amount during and between
production of each ore with slight deviation.

• CM is an unsigned integer representing the storage capacity of the miner.

• TM is an unsigned integer representing the oretype of the miner. Ores have correspond-
ing values:

– IRON: 0

– COPPER: 1

– COAL: 2

• RM is an unsigned integer representing the total amount of ore that can be extracted
from the mine.

Next line contains the number of transporters (NT ) in the simulation. Following NT lines
contain the properties of the transporters with ith ID in the following format:
- IT

• IT is an unsigned integer representing the travel and load/unload time of the transporter.
It is given in microseconds. The transporter will sleep this amount during travel or
load/unload operation slight deviation.

Next line contains the number of smelters (NS) in the simulation. Following NS lines contain
the properties of the smelters with ith ID in the following format:
- IS CS TS

• IS is an unsigned integer representing the production interval of the smelter. It is given
in microseconds. The smelter will sleep this amount during production of each ingot
with slight deviation.

• CS is an unsigned integer representing the storage capacity for ores of the smelter.

• TS is an unsigned integer representing the oretype of the smelters. It can be IRON or
COPPER with 0 and 1 values respectively.

Next line contains the number of foundries (NF ) in the simulation. Following NF lines contain
the properties of the foundries with ith ID in the following format:
- IF CF

• IF is an unsigned integer representing the production interval of the foundry. It is given
in microseconds. The foundry will sleep this amount during production of each ingot
with slight deviation.

• CF is an unsigned integer representing the storage capacity for ores of the foundry.

12



5 Specifications
• Your code must be written in C or C++ on Linux. No other platforms and languages

will be accepted.

• You are allowed to use pthread.h and semaphore.h libraries for the threads, semaphores,
condition variables and mutexes. Your solution should not employ busy wait. Your
Makefile should not contain any library flag other than -lpthread. It will be separately
controlled.

• Submissions will be evaluated with black box technique with different inputs. Conse-
quently, output order and format is important. Please make sure that calls to Write-
Output function done in the correct thread and correct step. Also, please do not modify
“writeOutput.c” and “writeOutput.h” files as your submission for these files will be over-
written.

• There will be penalty for bad solutions. Non terminating simulations will get zero from
the corresponding input.

• Your submission will be evaluated on lab computers (ineks).

• Everything you submit should be your own work. Usage of binary source files and codes
found on internet is strictly forbidden.

• Please follow the course page on piazza for updates and clarifications.

• Please ask your questions related to homework through piazza instead of emailing di-
rectly to teaching assistants.

13



6 Submission
Submission will be done via COW. Create a tar.gz file named hw2.tar.gz that contains all your
source code files together with your Makefile. Your tar file should not contain any folders.
Your code should be able to compile and your executable should run using this command
sequence.

> tar -xf hw2.tar.gz
> make all
> ./simulator

The name of your executable is not important as long as it executes with “make run” command.
If there is a mistake in any of the 3 steps mentioned above, you will lose 10 points.

7 Cheating
We have zero tolerance policy for cheating. People involved in cheating will be punished
according to the university regulations. Cheating Policy: Students may discuss the concepts
among themselves or with the instructor or the assistants. However, when it comes to doing
the actual work, it must be done by the student alone. As soon as you start to write your
solution or type it, you should work alone. In other words, if you are copying text directly
from someone else - whether copying less or typing from someone else’s notes or typing while
they dictate - then you are cheating (committing plagiarism, to be more exact). This is
true regardless of whether the source is a classmate, a former student, a website, a program
listing found in the trash, or whatever. Furthermore, plagiarism even on a small part of the
program is cheating. Also, starting out with code that you did not write, and modifying it
to look like your own is cheating. Aiding someone else’s cheating also constitutes cheating.
Leaving your program in plain sight or leaving a computer without logging out, thereby leaving
your programs open to copying, may constitute cheating depending upon the circumstances.
Consequently, you should always take care to prevent others from copying your programs, as
it certainly leaves you open to accusations of cheating. We have automated tools to determine
cheating. Both parties involved in cheating will be subject to disciplinary action. [Adapted
from http://www.seas.upenn.edu/cis330/main.html]

14

http://www.seas.upenn.edu/cis330/main.html

	Objective
	Problem Definition
	Implementation Specifications
	Input Specifications
	Specifications
	Submission
	Cheating

