
Middle East Technical University Department of Computer Engineering

CENG 334

Operating Systems

Spring 2018-2019

Take Home Exam 3

Filesystems

Due date: 20 May 2019 23:55

1 Objectives

The goal of the assignment is to familiarize you with filesystem structures. Towards this end, you will
write a program that can read a regular file and copy its content as a new file into an ext2 image (a
file containing the contents and structure of a disk volume or an entire data storage device), without
mounting it.

2 ext2 filesystem

The structure of the ext2 filesystem, shown in Figure 1, is as follows; The first 1024 bytes of the disk is
reserved as a boot block. This block is followed by a number of block/block groups. Each block group starts
with its super block, followed by group descriptors. The blocks bitmap and inodes bitmap structures store
information about free/allocated blocks and free/allocated inodes in the group. Each bitmap structure
takes 1 block and hence the block and inode bitmaps occupy 2 blocks. The inode table, size of which
depends on the number of inodes created during the formatting process, is stored in subsequent blocks.
The remaining blocks within the group are used as data blocks.

Figure 1: ext2 filesystem structure.

1

Here we provide some conventions about the ext2 filesystem, to ease your introduction:

• Block numbering starts from 1 (not zero!).

• Block numbering starts at the beginning of the disk.

• The super block of the first group (namely Block/block group 0 in Figure 1) resides in block 1.

• inode numbering starts from 1 (not zero!).

• The root directory inode always resides in inode number 2.

• The first 11 inodes are reserved.

• There is always a lost+find directory in the root directory.

• The total number of data and inode blocks and number of inode and data blocks in each block
group are defined in superblock.

The super block structure is defined as follows in the Linux kernel:
s t r u c t ext2_super_block {

__le32 s_inodes_count ; /∗ Inodes count ∗/
__le32 s_blocks_count ; /∗ Blocks count ∗/
__le32 s_r_blocks_count ; /∗ Reserved b locks count ∗/
__le32 s_free_blocks_count ; /∗ Free b locks count ∗/
__le32 s_free_inodes_count ; /∗ Free inodes count ∗/
__le32 s_first_data_block ; /∗ F i r s t Data Block ∗/
__le32 s_log_block_size ; /∗ Block s i z e ∗/
__le32 s_log_frag_size ; /∗ Fragment s i z e ∗/
__le32 s_blocks_per_group ; /∗ # Blocks per group ∗/
__le32 s_frags_per_group ; /∗ # Fragments per group ∗/
__le32 s_inodes_per_group ; /∗ # Inodes per group ∗/
__le32 s_mtime ; /∗ Mount time ∗/
__le32 s_wtime ; /∗ Write time ∗/
__le16 s_mnt_count ; /∗ Mount count ∗/
__le16 s_max_mnt_count ; /∗ Maximal mount count ∗/
__le16 s_magic ; /∗ Magic s i g n a t u r e ∗/
__le16 s_state ; /∗ F i l e system s t a t e ∗/
__le16 s_errors ; /∗ Behaviour when d e t e c t i n g e r r o r s ∗/
__le16 s_minor_rev_level ; /∗ minor r e v i s i o n l e v e l ∗/
__le32 s_lastcheck ; /∗ time o f l a s t check ∗/
__le32 s_checkinterval ; /∗ max . time between checks ∗/
__le32 s_creator_os ; /∗ OS ∗/
__le32 s_rev_level ; /∗ Revis ion l e v e l ∗/
__le16 s_def_resuid ; /∗ Defau l t uid f o r r e s e rved b locks ∗/
__le16 s_def_resgid ; /∗ Defau l t g id f o r r e s e rved b locks ∗/
__le32 s_first_ino ; /∗ F i r s t non−r e s e rved inode ∗/
__le16 s_inode_size ; /∗ s i z e o f inode s t r u c t u r e ∗/
/∗ the re are other i r r e l e v a n t f i e l d s ∗/

} ;

where le32 is 32 bit unsigned integer and le16 is 16 bit unsigned integer.

Note that;

• s blocks count is the total number of blocks in the image

• s inodes count is the total number of inodes in the image

• 2s log block size+10 is the block size. A typical value is 1024.

2

• s inode size is the size of an inode structure. A typical value is 128.

• The number of block groups can be calculated as ceiling of s blocks count
s blocks per group

• inode’s are numbered globally across the whole volume (or image) as opposed to within the block
group.

• The block group in which an inode resides can be computed using the
⌊

(inode−1)
s inodes per group

⌋
formula.

• Within the inode table of a block group (table address is given in group descriptor table entry), a
modulo operation determines the index of the inode.

• The size of an inode is smaller than the size of a block, hence the lookup process should take the
inode size into account.

• Data block addresses in inode structure are absolute block addresses of the filesystem image.

• The block group containing a data block can be calculated as
⌊

blockaddr
s blocks per group

⌋
. Remainder of this

division gives index of the data block within the block group, which is used in locating its index in
block allocation table.

• Each block group may contain a superblock backup copy, group descriptor table backup copy.
Groups 0, 1 and groups that are powers of 3, 5, or 7 contains these copies. The others directly start
with the bitmap data. As a result, the offset of inode and data block bitmaps are not fixed. You
need to read group descriptor table for offset of bitmap blocks and inode table.

The group descriptor table blocks, which comes after each super block copy, describes the structure of
each block group:
s t r u c t group_descriptor {

__le32 bg_block_bitmap ; /∗ Blocks bitmap block ∗/
__le32 bg_inode_bitmap ; /∗ Inodes bitmap block ∗/
__le32 bg_inode_table ; /∗ Inodes t a b l e b lock ∗/
__le16 bg_free_blocks_count ; /∗ Free b locks count ∗/
__le16 bg_free_inodes_count ; /∗ Free inodes count ∗/
__le16 bg_used_dirs_count ; /∗ D i r e c t o r i e s count ∗/
__le16 bg_pad ;
__le32 bg_reserved [3] ;

} group_descriptors [NGROUPS] ;

In the table, there is an entry for each group, which contains the absolute block addresses of data blocks
bitmap, inodes bitmap, and inodes table. The number of blocks that the blocks/inodes bitmap occupy
can be computed by dividing the number of blocks/inodes by 8 (i.e number of bits in a byte) rounded
up to the block size. For instance, one 1024 byte block is sufficient for the blocks bitmap to store the
free/allocated information about 8192 blocks.

An inode table has the following structure:

s t r u c t ext2_inode {
__le16 i_mode ; /∗ F i l e mode ∗/
__le16 i_uid ; /∗ Low 16 b i t s o f Owner Uid ∗/
__le32 i_size ; /∗ S i z e in bytes ∗/
__le32 i_atime ; /∗ Access time ∗/
__le32 i_ctime ; /∗ Creat ion time ∗/
__le32 i_mtime ; /∗ Modi f i ca t i on time ∗/
__le32 i_dtime ; /∗ Dele t i on Time ∗/

3

__le16 i_gid ; /∗ Low 16 b i t s o f Group Id ∗/
__le16 i_links_count ; /∗ Links count ∗/
__le32 i_blocks ; /∗ Blocks count ∗/
__le32 i_flags ; /∗ F i l e f l a g s ∗/
__le32 i_reserved ; /∗ OS dependent r e s e rved ∗/
__le32 i_block [1 2] ; /∗ Pointe r s to b locks ∗/
__le32 i_ind_block ;
__le32 i_dind_block ;
__le32 i_tind_block ;
/∗ r e s t i s i r r e l e v a n t , pad i t to 128 bytes ∗/

} inode_table [N_INODES_PER_BLOCK] ;

A directory is represented as a file and hence has a corresponding inode which contains direct/indirect
pointers to its data blocks. The data blocks of a directory stores directory entry structures as follows:
struct ext2_dir_entry {

__le32 inode ; /∗ Inode number ∗/
__le16 rec_len ; /∗ Directory entry l ength ∗/
__le16 name_len ; /∗ Name l ength ∗/
char name [] ; /∗ File name , up to EXT2_NAME_LEN ∗/

} ;

where rec len is the length of the whole entry and name len is the length of the file name string. rec len

is usually rounded up to 4 bytes word.

The data blocks of a directory contains all files (note that directories are also files) under this directory as
sequence of these directory entries. A new file entry can be created after the last directory entry, which
can be found after a sequential search.

More information about the ext2 file system can be found in the following links:

• http://www.nongnu.org/ext2-doc/ext2.html: ext2 documentation.

• https://wiki.osdev.org/Ext2: The OSDev wiki page on ext2

• Also http://web.mit.edu/tytso/www/linux/ext2intro.html: A page by Dave Poirer containing
more details.

2.1 Details

• You can create a disk image with 128 blocks of size 1024 with the following command:

$ dd i f =/dev/zero of=image . img bs=1024 count=128

• The disk image can then be formatted with mke2fs. The following commands format the disk and
force the creation of 32 inodes.

$ mke2fs −N 32 image . img

• You can mount the image (for verification purposes only) by creating a loopback device by:

$ mkdir mnt

$ sudo mount −o loop image . img mnt

and unmount with:

$ umount mnt

• On computers where you do not have administrative privileges (such as the ones in the lab), you
can use FUSE based fuseext2 to mount your image to a folder you own as:

4

http://www.nongnu.org/ext2-doc/ext2.html
https://wiki.osdev.org/Ext2
http://web.mit.edu/tytso/www/linux/ext2intro.html

$ fuseext2 −o rw + image . img mnt

and unmount with:

$ fusermount −u mnt

• dumpe2fs tool can be used to inspect structure of filesystem.

• You are expected to copy only regular files into the ext2 image. Your implementation should
support different block sizes, different number of inodes and different number of blocks in the image.
Copying of files other than regular files is not required.

• You can inspect differences between two image files using a xxd hex dump and diff. For instance,
you can use the following command to inspect the differences between two images:

$ diff <(xxd image1 . img) <(xxd image2 . img) > images . diff

2.2 Implementation, Compilation & Execution Details

Any standard library can be used in your code. However, the use of libraries with ext2 implemen-
tation is forbidden!

You have to provide a makefile with your implementation which creates an executable named filecopy.

Your code will be tested using the command:
$. / filecopy imagefile sourcefile targetdirpath | targetdirinode

which should result in copying the regular file sourcefile into the ext2 image file imagefile. The file
should be created with same name under the targetdirpath directory of the ext2 image. targetdirpath
will be an absolute path. If it does not start with ‘/’, it should be assumed relative to ‘/’, root of the
ext2 image. Instead of a directory path, the target can be given as location of an inode block, which is
the inode for a directory.

The steps of your task are:

• Open the ext2 image file.

• If targetdirpath is given, traverse the path and get the directory data blocks.

• If targetdirinode is given get the inode and get the directory data blocks.

• Allocate a new inode, fill in metadata from metadata of sourcefile (see man 2 stat).

• Allocate data blocks for the new file. For simplicity, assume that the file data will fit only in direct
blocks of the inode. if it is larger, it is truncated to direct data block addressing.

• Set data blocks of the inode of the created file.

• Insert an entry in data blocks of the directory for the file mapping file name into file inode.

• Close the image file.

After these steps, the copied file should be visible in the given path of the ext2 image.

You will be given a valid and non corrupted ext2 image file. However note that it does not have to
be empty and may already contain files in it. Your code will be tested multiple times with different files
and images successively. When copying a file, you are expected to print the inode number of the file that
you created and its corresponding data blocks, such as:

5

$. / filecopy imagefile file targetdirectory

12 8 ,9 ,10 ,11

3 Restrictions, Grading and Warnings

• Your implementation should be in C/C++.

• The submissions should be done via COW.

• Create a tar.gz file named hw3.tar.gz that contains all your source code files and a makefile.

• The executable should be named filecopy.

• The following sequence of commands should compile and execute your code.

$ tar −xf hw3 . tar . gz
$ make all

$. / filecopy imagefile sourcefile targetdirectory

$. / filecopy imagefile sourcefile targetinode

• Your codes will be evaluated through a black-box approach and have to compile and run on lab.
machines.

• After your code runs, the target image filesystem check should not produce any integrity errors.

• The minimal implementation for getting partial points from this homework is the correct imple-
mentation of:
filecopy imagefile sourcefile targetinode.
which is worth 60 points.

• If sourcefile is directory, and recursive copy of the directory is implemented, a 15 point bonus
will be granted.

• If files larger than 12 direct blocks is supported (up to triple indirect) a 15 point bonus will be
granted.

• Please ask your questions related to the homework on piazza only so that the discussions become
public and would benefit you all.

• Cheating: We have zero tolerance policy for cheating. Sharing part or whole of your
code with other students, or copying code from other sources on the internet will be considered as
cheating, and disciplinary action will be taken against.

6

	Objectives
	ext2 filesystem
	Details
	Implementation, Compilation & Execution Details

	Restrictions, Grading and Warnings

