EP2827: Thermodynamics
Homework Set III Solutions®

February 26, 2019

Regarding the internal energy of a hydrostatic system to be a function of # and P, derive the following
equations:
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(3 x 4 =12 points)

Solution:
(a) We start with the first law,

dQ = dU+ PdV

— CP—PV/B =

(b) We start from the second line of part (a),
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*Due in class on Tuesday, Feb. 26th



Now we divide both sides by df holding V fixed, to get,
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where we have substituted the expression for (8U

&7) p from part (a). So now we have
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Finally, for the denominator we need to use the lemma
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(c) Next, we manipulate
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Recalling that (no need to derive this)
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and following some steps
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Thus,



(d) For the last one, we start with the expression,
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Next we plug in the numerator the result from part (a) and get,

<8U> Cp—PVB _Cp

(a) Starting from the assumption that the internal energy function of a hydrostatic system is a function
of P,V ie., U =U(P,V), show that one can express the first law in the form,

Cp
dQ = Cy2dp + L av.
Q=0v2 5 + 3 5
Show that this leads to the relation,
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Here kg and ks are respectively the isothermal and adiabatic compressibility.
(4 + 2 = 6 points)

Solution:
For this problem we consider the internal energy to be a function of pressure and volume, U =
U (P, V). The infinitesimal change in internal energy is then,

oU oUu
dU = —==) dP — | dV.
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Using the same set of steps as in part (c) of the previous problem, we get (g—g) = C’V 50 and

substitute, to get,

ou
dU = CV,BdP+<8V> dv.

We now plug this in the first law,

dQ = dU + PdV
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At constant pressure, i.e. dP = 0, we have,
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where the subscript denotes constant P. Dividing both sides by dfp, we get,
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Inserting this back in first law expression (1), we get,

. Ko Cp
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(4 points for this part)

Next we consider an adiabatic process. In such a case, dQ = 0, and the first law expression (2)
becomes,

0= CV%dPS + ggdm,
where the subscript s denotes adiabatic conditions. Rearranging this expression we get,
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(2 points for this part)

(a) Show that for a hydrostatic system,
oY _Cr
ov ), BV
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Solution:
Recall that the first law in terms of enthalpy change is,

dQ = dU + PdV = dH — VdP.

Holding pressure fixed, i.e. dP = 0 and dividing both sides by df, one has,

c,—Qp _ (0H
P dop 00 ) p

4



Now, considering the enthalpy to be a function of temperature and pressure, i.e. H = H(f, P), the
infinitesimal change in enthalpy is given by,
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Now in this expression, again we hold P fixed, i.e. dP = 0 and divide both sides by dV, to get,
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A unit mole of a gas obeys the van der Waals equation of state:
a
<P+ ﬁ) (v—b) = RY,

and its molar internal energy is given by ,
a
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where a, b, ¢, and R are constants. Calculate the molar heat capacities ¢, and cp.
(54 5 = 10 points)

Solution :
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(5 points for this part)

Next,
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From the internal energy expression, we compute,
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and from the vdW equation of state we compute (recall calculation of 8 from last HW),
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So gathering all contributions,

One can check that in the ideal gas limit, i.e. when a = b = 0, these indeed reproduce the well
known result, cp — ¢, = R.
(5 points for this part),

For a paramagnetic solid obeying Curie’s law as the equation of state, show that
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Here C, denotes the Curie constant, not some heat capacity.

and,

(2 + 3 = 5 points)

Solution:
The first law of thermodynamics gives,

dQ) = dU — BdM

Now the internal energy, U can be thought of as function of two of the three thermodynamic
coordinates, B, M, 0. Let’s take it to be a function of M and B, i.e. U = U(B, M). Then we can
expand the first law,

dQ = dU — BdM
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At constant magentization, i.e. when dM = 0, this becomes
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where the subscript implies constant M. Dividing both sides by df; and we get,
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(2 points for this)

Next, we set B constant, i.e. dB = 0. In such a case the first law becomes,
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Divinding both sides by dfp we then get,
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Next we use Curie’s law, M = C¢ %, to compute the underlined quantity,
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and substitute this back to get,
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(3 points for this part)



