
EP2827: Thermodynamics

Homework Set III Solutions∗

February 26, 2019

1.

Regarding the internal energy of a hydrostatic system to be a function of θ and P , derive the following
equations:
(a)
(
∂U
∂θ

)
P

= CP − P V β,

( b)
(
∂U
∂P

)
θ

= PV κ− (CP − CV ) κβ
(c)
(
∂U
∂P

)
V

= CV κ
β

(d)
(
∂U
∂V

)
P

= CP
βV − P.

(3× 4 = 12 points)

Solution:
(a) We start with the first law,

dQ = dU + PdV

=

(
∂U

∂θ

)
P

dθ +

(
∂U

∂P

)
θ

dP + PdV

=⇒
(
dQ

dθ

)
P

=

(
∂U

∂θ

)
P

+ P

(
∂V

∂θ

)
P

=⇒ CP =

(
∂U

∂θ

)
P

+ P V
1

V

(
∂V

∂θ

)
P︸ ︷︷ ︸

=β

=⇒ CP − P V β =

(
∂U

∂θ

)
P

.

(b) We start from the second line of part (a),

dQ =

(
∂U

∂θ

)
P

dθ +

(
∂U

∂P

)
θ

dP + PdV

∗Due in class on Tuesday, Feb. 26th
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Now we divide both sides by dθ holding V fixed, to get,(
dQ

dθ

)
V

=

(
∂U

∂θ

)
P

+

(
∂U

∂P

)
θ

(
∂P

∂θ

)
V

,

=⇒ CV =

(
∂U

∂θ

)
P

+

(
∂U

∂P

)
θ

(
∂P

∂θ

)
V

= CP − P V β +

(
∂U

∂P

)
θ

(
∂P

∂θ

)
V

,

where we have substituted the expression for
(
∂U
∂θ

)
P

from part (a). So now we have,(
∂U

∂P

)
θ

= −CP − CV − PV β(
∂P
∂θ

)
V

Finally, for the denominator we need to use the lemma,(
∂P

∂θ

)
V

(
∂θ

∂V

)
P

(
∂V

∂P

)
θ

= −1

to obtain, (
∂P

∂θ

)
V

= − 1(
∂θ
∂V

)
P

(
∂V
∂P

)
θ

=
1
V

(
∂V
∂θ

)
P

− 1
V

(
∂V
∂P

)
θ

=
β

κ
.

Thus we get, (
∂U

∂P

)
θ

= −CP − CV − PV β
β
κ

= PV κ− (CP − CV )
κ

β
.

(c) Next, we manipulate, (
∂U

∂P

)
V

=

(
∂U

∂θ

)
V

(
∂θ

∂P

)
V

.

Recalling that (no need to derive this), (
∂U

∂θ

)
V

= CV

and following some steps,(
∂θ

∂P

)
V

=

(
∂θ

∂P

)
V

(
∂P

∂V

)
θ

(
∂V

∂θ

)
P︸ ︷︷ ︸

=−1

(
∂V

∂P

)
θ

(
∂θ

∂V

)
P

= −
(
∂V

∂P

)
θ

(
∂θ

∂V

)
P

=
− 1
V

(
∂V
∂P

)
θ

1
V

(
∂V
∂θ

)
P

=
κθ
β
.

Thus, (
∂U

∂P

)
V

=

(
∂U

∂θ

)
V

(
∂θ

∂P

)
V

= CV
κθ
β
,

2



(d) For the last one, we start with the expression,(
∂U

∂V

)
P

=

(
∂U

∂θ

)
P

(
∂θ

∂V

)
P

=

(
∂U
∂θ

)
P 1

V

(
∂V

∂θ

)
P︸ ︷︷ ︸

=β

V
Next we plug in the numerator the result from part (a) and get,(

∂U

∂V

)
P

=
CP − P V β

β V
=
CP
βV
− P.

2.

(a) Starting from the assumption that the internal energy function of a hydrostatic system is a function
of P, V i.e., U = U(P, V ), show that one can express the first law in the form,

d̄Q = CV
κθ
β
dP +

CP
V β

dV.

Show that this leads to the relation,
CP
CV

=
κθ
κs
.

Here κθ and κs are respectively the isothermal and adiabatic compressibility.
(4 + 2 = 6 points)

Solution:
For this problem we consider the internal energy to be a function of pressure and volume, U =
U (P, V ). The infinitesimal change in internal energy is then,

dU =

(
∂U

∂P

)
V

dP +

(
∂U

∂V

)
P

dV.

Using the same set of steps as in part (c) of the previous problem, we get
(
∂U
∂P

)
V

= CV
κθ
β and

substitute, to get,

dU = CV
κθ
β
dP +

(
∂U

∂V

)
P

dV.

We now plug this in the first law,

d̄Q = dU + PdV

= CV
κθ
β
dP +

[(
∂U

∂V

)
P

+ P

]
dV (1)
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At constant pressure, i.e. dP = 0, we have,

d̄QP =

[(
∂U

∂V

)
P

+ P

]
dVP

where the subscript denotes constant P . Dividing both sides by dθP , we get,

d̄QP
dθP

=

[(
∂U

∂V

)
P

+ P

](
∂V

∂θ

)
P

⇒ CP =

[(
∂U

∂V

)
P

+ P

](
∂V

∂θ

)
P

⇒ CP

V
[
1
V

(
∂V
∂θ

)
P

] =

(
∂U

∂V

)
P

+ P

⇒ CP
V β

=

(
∂U

∂V

)
P

+ P.

Inserting this back in first law expression (1), we get,

d̄Q = CV
κθ
β
dP +

CP
V β

dV. (2)

(4 points for this part)

Next we consider an adiabatic process. In such a case, d̄Q = 0, and the first law expression (2)
becomes,

0 = CV
κθ
β
dPs +

CP
V β

dVs,

where the subscript s denotes adiabatic conditions. Rearranging this expression we get,

CP
CV

=
κθdPs

(−dVs/V )
=

κθ

− 1

V

(
∂V

∂P

)
S︸ ︷︷ ︸

=κS

=
κθ
κS
.

(2 points for this part)

3.

(a) Show that for a hydrostatic system, (
∂H

∂V

)
P

=
CP
βV

(2 points)

Solution:
Recall that the first law in terms of enthalpy change is,

d̄Q = dU + PdV = dH − V dP.

Holding pressure fixed, i.e. dP = 0 and dividing both sides by dθ, one has,

CP =
d̄QP
dθP

=

(
∂H

∂θ

)
P

.
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Now, considering the enthalpy to be a function of temperature and pressure, i.e. H = H(θ, P ), the
infinitesimal change in enthalpy is given by,

dH =

(
∂H

∂θ

)
P

dθ +

(
∂H

∂P

)
θ

dP

= CPdθ +

(
∂H

∂P

)
θ

dP.

Now in this expression, again we hold P fixed, i.e. dP = 0 and divide both sides by dV , to get,(
∂H

∂V

)
P

= CP

(
∂θ

∂V

)
P

=
CP

V

 1

V

(
∂V

∂θ

)
P︸ ︷︷ ︸

=β


=
CP
βV

.

4.

A unit mole of a gas obeys the van der Waals equation of state:(
P +

a

v2

)
(v − b) = Rθ,

and its molar internal energy is given by ,

u = c θ − a

v

where a, b, c, and R are constants. Calculate the molar heat capacities cv and cP .
(5 + 5 = 10 points)

Solution :

cv ≡
(
∂q

∂θ

)
v

=

(
∂u

∂θ

)
v

=

[
∂

∂θ

(
c θ − a

v

)]
v

= c.

(5 points for this part)

Next,

cP ≡
(
∂q

∂θ

)
P

= cv +

[(
∂u

∂v

)
θ

+ P

](
∂v

∂θ

)
P

(3)

From the internal energy expression, we compute,(
∂u

∂v

)
θ

=
a

v2
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and from the vdW equation of state we compute (recall calculation of β from last HW),(
∂v

∂θ

)
P

=
Rv3(v − b)

Rθv3 − 2a (v − b)2
.

So gathering all contributions,

cP = c+
( a
v2

+ P
) Rv3(v − b)
Rθv3 − 2a (v − b)2

= c+
R

1− 2a (v−b)2
Rθv3

.

One can check that in the ideal gas limit, i.e. when a = b = 0, these indeed reproduce the well
known result, cP − cv = R.
(5 points for this part)

�

5.

For a paramagnetic solid obeying Curie’s law as the equation of state, show that

CM =

(
∂U

∂θ

)
M

,

and,

CB =

(
∂U

∂θ

)
B

+
M2

Cc
.

Here Cc denotes the Curie constant, not some heat capacity.
(2 + 3 = 5 points)

Solution:
The first law of thermodynamics gives,

d̄Q = dU −BdM

Now the internal energy, U can be thought of as function of two of the three thermodynamic
coordinates, B,M, θ. Let’s take it to be a function of M and B, i.e. U = U(B,M). Then we can
expand the first law,

d̄Q = dU −B dM

=

(
∂U

∂B

)
M

dB +

(
∂U

∂M

)
B

dM −B dM

=

(
∂U

∂B

)
M

dB +

[(
∂U

∂M

)
B

−B
]
dM

At constant magentization, i.e. when dM = 0, this becomes

d̄QM =

(
∂U

∂B

)
M

dBM ,

where the subscript implies constant M . Dividing both sides by dθM and we get,

CM ≡
(
dQ

dθ

)
M

=

(
∂U

��∂B

)
M

(
��∂B

∂θ

)
M

=

(
∂U

∂θ

)
M

.
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(2 points for this)

Next, we set B constant, i.e. dB = 0. In such a case the first law becomes,

d̄QB =

[(
∂U

∂M

)
B

−B
]
dMB,

Divinding both sides by dθB we then get,

CB ≡
(
dQ

dθ

)
B

=

[(
∂U

∂M

)
B

−B
] (

∂M

∂θ

)
B

=

(
∂U

���∂M

)
B

(
�

��∂M

∂θ

)
B

−B
(
∂M

∂θ

)
B

=

(
∂U

∂θ

)
B

−B
(
∂M

∂θ

)
B

.

Next we use Curie’s law, M = CC
B
θ , to compute the underlined quantity,

B

(
∂M

∂θ

)
B

= B
∂

∂θ

(
CC

B

θ

)
= −CC

B2

θ2
= − 1

CC

(
CC

B

θ

)2

= −M
2

CC
,

and substitute this back to get,

CB =

(
∂U

∂θ

)
B

+
M2

CC
.

(3 points for this part)
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