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The third law concerns the behavior of systems (in internal equilibrium) as the temperature is lowered
and made to approach the absolute zero. We will again refer to our pet system which is a hydrostatic system.
It is an experimental fact that as the system1 approaches absolute zero, the changes in Gibbs and Enthalpy
in any isothermal process approaches the same,

∆G = ∆H|T→0

This can be explained theoretically noting first that, G = U − TS + PV = H − TS, so that

∆G = ∆H − T∆S − S∆T,

and since for an isothermal process, ∆T = 0,

∆G = ∆H − T∆S.

As T → 0, it is now obvious that,
lim
T→0

∆G = lim
T→0

∆H.

So this is not surprising that experiments find this behavior. However experiments reveal not only do the
change in Gibbs function and the enthalpy function approach each other, the slope of the changes in fact
vanish, i.e.,

lim
T→0

∂(∆G)

∂T
= lim

T→0

∂(∆H)

∂T
= 0.

In particular for an isobaric process,

lim
T→0

(
∂(∆G)

∂T

)
P

= lim
T→0

(
∂(∆H)

∂T

)
P

= 0

Swapping the order of ∆ and ∂
∂T we get,

lim
T→0

∆

(
∂G

∂T

)
P

= 0.

Next, we recall that,
(
∂G
∂T

)
P

= −S and obtain the result,

lim
T→0

∆S = 0,

i.e. in the neighborhood of absolute zero, all processes in a system/substance in internal equi-
librium occur with no change in entropy. This result is known as the Nernst Heat theorem (1907).

Planck, in 1911, however made an even stronger statement which do not follow from the preexisting
thermodynamic relations, that not only is the entropy change in a process, but the entropy itself approaches
zero as the system (throughout in internal equilibrium) is made to approach T = 0 K, i.e.,

lim
T→0

S = 0.

1Most of these experiments concerned chemical reactions occurring at constant temperature and pressure.
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This statement is known as the third law of thermodynamics, to wit: the entropy of every sub-
stance/system in internal equilibrium at absolute zero is itself zero.

The third law is an independent law which determines the integration constant we encounter while we
obtain the expression for the entropy integrating the TdS equations. For example at constant volume,
integrating the first TdS equations, one has

S(V, T ) =

ˆ T

0

CV

T
dT + S0.

Then the third law fixes, S0 = 0, or,

S(V, T ) =

ˆ T

0

CV

T
dT.

Similarly at constant pressure,

S(P, T ) =

ˆ T

0

CP

T
dT.

But both the expressions for S, be it at constant V or at constant P appear to diverge as T → 0, unless
CP , CV → 0 faster than T . So at absolute zero,

Cp, CV → 0.

Now we already know that as a consequence of the second law we have a heat capacity equation,

CP − CV ∝ T

so,
CP = CV , as T → 0.

But the third law has a stronger implication that not only are these two equal but they vanish as T → 0.

Similar behavior is exhibited by the other response function, thermal expansivity, β. Using the Maxwell
relation,

β ∝
(
∂V

∂T

)
P

∝ −
(
∂S

∂P

)
T

.

Now since at absolute zero, according to the Nernst heat theorem

lim
T→0

(
∂S

∂P

)
T

= lim
T→0

(
∂S

∂V

)
T

= 0,

one has
lim
T→0

β = 0.

The third law also implies that it is impossible to reduce the temperature of a system to absolute
zero in any finite number of operations, as we shall see shorty. This alternative version of the third
law is better known as the Unattainability (of absolute zero) statement. The most efficient method to
cool a system is to isolate it from its surroundings i.e. (adiabatic) and make it perform work purely at the
expense of its internal energy. This decrease in internal energy will in turn lower its temperature. To this
end consider a reversible adiabatic (isentropic) process by which the temperature as well some other state
variable X, could be any extensive variable or intensive get changed. The entropy of the initial and final
states, in consistency with the third law, are given by,

S1(X1, T1) =

ˆ T1

0

CX(X1, T )

T
dT, S2(X2, T2) =

ˆ T2

0

CX(X2, T )

T
dT

Since the process is isentropic,
S1(X1, T1) = S2(X2, T2),
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Figure 1: ST diagrams for a process displaying the equivalence of the Planck statement and the unattain-
ability statement of the third law of thermodynamics

ˆ T1

0

CX(X1, T )

T
dT =

ˆ T2

0

CX(X2, T )

T
dT.

Now let’s say the isentropic process can be taken all the way to T2 = 0 beginning with some finite T1. Then
the above equality becomes, ˆ T1

0

CX(X1, T )

T
dT = 0.

However the integrand is manifestly positive for all T > 0 as CX and T are both positive, and the hence
statement cannot be true. Therefore no such isentropic process is possible which absolute zero is attained.
This is a version of the unattainability statement of the third law.

A more instructive example which shows the equivalence of the Planck’s statement and the uttainability
statement of the third law using our pet systems, the hydrostatic system or the paramagnet is as follows.
Let’s consider a gas undergoing an isothermal compression in contact with a heat reservoir at temperature
T during which the pressure increases, say from an initial value P to higher value P ′. This is then followed
by an reversible adiabatic (isentropic) expansion back to initial pressure P , causing the temperature to
drop to T ′ below T (Check that this is what happens for instance when you have an ideal gas.). Thus
this two step process will bring the gas at its original pressure while lowering it’s temperature. In case
of the paramagnet one first performs a reversible isothermal magnetization from an initial value M to a
larger value M ′, followed by the reversible adiabatic demagnetization till the original magnetization M is
restored. The adiabatic demagnetization stage causes cooling and is the standard technique to produce low
temperatures in the lab using paramagnetic salt. Now if a finite number of such a sequence of two step
cooling process allows one to lower the temperature of the system (gas or paramagnet) to absolute zero,
then constant P lines should look like in the left S-T diagram in figure (1) above. However according to the
third law of thermodynamics, the constant P lines must all converge to the S = 0 at T = 0 as the entropy of
a system when lowered to T = 0 must go to zero regardless of the pressure (or magnetization). If all these
isobars converge at S = 0 when T = 0, as in the S-T diagram on the right in figure (1), then the triangles
representing the two step process ( vertical downward isothermal compression followed by horizontal leftward
adiabatic expansion) becomes smaller and smaller as one approaches T = 0, and it is clear it will take infinite
such steps to reach T = 0. Thus, the Planck statement leads to the unattainability statement.
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