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1 Short recap of material covered in class
Consider the following reversible chemical reaction,∑

l

νlXl = 0. (1)

Here the subscript l denotes the l-th chemical species, be it reactants or products, the Xl is the chemical
symbols for the l-th chemical species and νl is the stoichiometric coefficient (or stoichiometric weight) of the
l-th chemical species participating in the reaction with the convention that the products have νl > 0 and
the reactants have νl < 0. For example consider the reaction,

2H2 +O2 � 2H2O.

As per our convention we first rewrite the reaction by bringing over the reactants to the products side,

2H2O − 2H2 −O2 = 0.

So here l = 1, 2, 3 because there are three chemical species participating in the reaction, namely H2O, H2

and O2. We will take, X1 = H2O, X2 = H2 and X3 = O2. The stoichiometric weights are ν1 = 2, ν2 = −2,
ν3 = −1.

Recall that in class we derived the law of mass action of physical chemistry applying thermodynamics
for a system undergoing the reversible reaction (1) at a temperature T and under pressure P ,∏

l

(xl)
νl P

∑
l νl = K(T ) (2)

where K(T ) is purely a function of the temperature for a given reaction, traditionally called by chemists as
the equilibrium constant. By applying thermodynamics and assuming that the reactants as well as products
are ideal gases, we saw in class, that the equilibrium constant is given by,

lnK(T ) = −
∑
l

νl φl(T ) (3)

where the function φl(T ) is a term in the expression for the molar Gibbs potential of the l-th chemical species
of an ideal gas defined by the equation,

φl(T ) =
h0,l
RT

− 1

R

∫ T

dT ′
∫ T ′

cP,ldT
′′

T ′2
− s0,l

R
.

Here h0, s0 are constants of integration which are related to the constants of integration molar enthalpy,
entropy and cP is the molar heat capacity at constant pressure. Plugging this in the previous equation we
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have the expression for the equilibrium constant under a chemical reaction as a function of temperature,

lnK(T ) = −
∑
l

νl

(
h0,l
RT

− 1

R

∫ T

dT ′
∫ T ′

cP,ldT
′′

T ′2
− s0,l

R

)

= −
(
∑
l νlh0,l)

RT
+

1

R

∫ T

dT ′
∫ T ′

(
∑
l νlcP,l) dT

′′

T ′2
+

(
∑
l νls0,l)

R

= −∆h0
RT

+
1

R

∫ T

dT ′
∫ T ′

∆cP dT
′′

T ′2
+

∆s0
R

. (4)

This result is known as the Nernst equation , which had been obtained experimentally by chemists. Taking
a derivative with respect to the temperature of both sides, we get,

d

dT
lnK(T ) = −

∑
l

νl
dφl(T )

dT

=
∑
l

νl

(
h0,l
RT 2

+
1

R

∫ T
cP.ldT

′

T 2

)

=

∑
l νl hl
RT 2

=
∆h

RT 2
,

where we have used the fact the molar enthalpy of the ideal gas is given by h = h0 +
∫ T

cP.ldT
′ in going from

the second to the third line and we have also defined ∆h =
∑
l νl hl, the enthalpy change in the reaction.

Now the first law implies,
∆Q = ∆U + P∆V = ∆H − V∆P

Thus under conditions of constant temperature and constant pressure,

∆Q = ∆H,

or using molar amounts,
∆q = ∆h

i.e. the heat absorbed (per mole) is equal to the change in (molar) enthalpy. Thus we have the beautiful
equation,

d

dT
lnK(T ) =

∆h

RT 2
=

∆qreaction
RT 2

.

Again this has been observed by chemists long before it was derived theoretically. This equation is known
as the van’t Hoff isobar .

2 Saha (ionization) equation
In 1920 M.N. Saha obtained a remarkable equation to predict the pressure of the outer atmosphere of
distant star from the simple input of the spectrum of their emitted starlight. Since the stellar atmosphere
temperatures are hot enough to ionize neutral constituents. Saha modeled the stellar atmosphere as made
up of a monatomic ideal gas (call it gas A) where the following thermal ionization reaction is prevailing,

A� A+ + e−.

In our notation we rewrite the reaction as,

A+ + e− −A = 0.
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Applying the law of mass action (2), one obtains

(xA+)
1

(xe−)
1

(xA)
−1
P 1+1−1 = K(T )

or,

lnK = ln

(
xA+xe−

xA
P

)
. (5)

Now let ε be the degree of reaction (ionization) , and let’s say there were n0 moles of the unionized gas A to
start with. Then in terms of ε and n0, the current number of moles of the different species are given by,

nA = n0(1 − ε),

nA+ = n0ε,

ne− = n0ε,

and total number of moles of everything is,

n = nA + nA+ + ne− = n0(1 + ε).

Thus, the mole fractions are,

xA =
nA
n

=
1 − ε

1 + ε
,

xA+ =
nA+

n
=

ε

1 + ε
,

xe− =
ne−

n
=

ε

1 + ε
,

Plugging these back in (5),

lnK = ln

(
ε2

1 − ε2
P

)
(6)

Thus from the knowledge of K(T ), and the degree of ionization ε one can determine the pressure of the
stellar atmosphere. The degree of ionization can be determined by ratio intensities of the light emitted from
the ionized to that of unionized gas examining the emission spectrum of the starlight. How does one gain
knowledge of K though? The answer is to apply the Nernst equation (4). For a monatomic gas we know
from kinetic theory, cp = 5R

2 . This means in this case,

∆cp = νA+cP,A+ + νe−cP,e− + νAcP,A

=
5

2
R,

and the Nernst equation gives,

lnK = −∆h0
RT

+
5

2
lnT +

∆s0
R

.

If the ionization energy of the reaction is E, then the molar heat of the reaction at zero temperature is,
∆h0 = NFE. (At zero temperature from kinetic theory we are assuming the particles do not move i.e. have
zero kinetic energy, hence the heat of the reaction is exactly equal to the ionization energy). Also from the
Boltzmann postulate,

s = R ln Ω

where Ω is the number of internal molecular microstates. Applying this formula for each species in the
ionization process,

∆s0 = νA+s0,A+ + νe−s0,e− + νAs0,A

= R ln
ΩA+Ωe−

ΩA
.
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So the final form of the Nernst equation for this case is,

lnK = −NFE
RT

+
5

2
lnT + ln

(
ΩA+Ωe−

ΩA

)
.

Thus from the knowledge of the fundamental constants, the ionization energy, E, the atomic structure data
i.e. Ω’s and the temperature of the star from some other measurement (Wien’s displacement law), one can
determine the (log of) equilibrium constant. This completes the discussion of Saha’s equation to determine
the pressure of stellar atmospheres.
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