
EP 2827: Thermodynamics

Homework Set 4
∗

March 13, 2019

1.

Show that the following Pfa�an form (of three variables x, y, z) does not admit an integrating factor:

d̄F = x dy + k dz

where k is a constant. (Hint: Refer to the note on exact and inexact di�erentials posted on the website)
3 points

Solution

The condition for integrability of a di�erential form,

d̄F =

n∑
i=1

Yi dxi

is,

Yi

(
∂Yj
∂xk
− ∂Yk
∂xj

)
+ Yj

(
∂Yk
∂xi
− ∂Yi
∂xk

)
+ Yk

(
∂Yi
∂xj
− ∂Yj
∂xi

)
= 0∀i 6= j 6= k. (1)

In the case at hand, n = 3, x1 = x, x2 = y and x3 = z and,

Y1 = 0, Y2 = x, Y3 = k.

For i = 1, j = 2, k = 3, we evaluate the quantity in the lhs of the integrability equation,

Y1

(
∂Y2
∂x3
− ∂Y3
∂x2

)
+ Y2

(
∂Y3
∂x1
− ∂Y1
∂x3

)
+ Y3

(
∂Y1
∂x2
− ∂Y2
∂x1

)
= 0

(
∂x

∂z
− ∂k

∂y

)
+ x

(
∂k

∂x
− ∂(0)

∂z

)
+ k

(
∂(0)

∂y
− ∂x

∂x

)
= −k 6= 0.

Thus the integrability condition is not satis�ed and the given Pfa�an does not admit an integrating
factor.

∗Due in class on Friday March 8th, 2019
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2.

Starting from the principle of increase of entropy of the universe, show that during an isothermal process
i.e. one in which a system remains in contact with a single reservoir at temperature say T throughout ,
the work done by the system is,

WT ≤ −∆F,

where ∆F ≡ Ffinal − Finitial is the change in Helmholtz potential; the equality holds when the process is
reversible. In addition if the process is occurring at constant external pressure, say P , the non-expansion
work or non-PdV work performed by the system satis�es,

W T,P ≤ −∆G,

where ∆G ≡ Gfinal −Ginitial, is the change in the Gibbs potential; the equality holding when the process
is reversible. These inequalities justify the nomenclature of the thermodynamic potentials F,G is �free
energy�, i.e. the part of the internal energy which can be made free/available by a system to be converted
into mechanical energy (work) i.e. the amount of work that can be extracted from the system.

(2 + 2 = 4 points)

Solution: The principle of increase of entropy of the universe i.e. the combined entropy of the
system, call it S and the entropy of surroundings, call it Ssurroundings

∆S + ∆Ssurroundings ≥ 0

Now during an isothermal process i.e. one in which a system remains in contact with a single reser-
voir at temperature say T throughout, the surroundings/reservoir undergoes a reversible isothermal
process in which let's say it dumps some amount of heat, Q into the system. Then,

∆Ssurroundings = −Q
T

Thus we have,

∆S − Q

T
≥ 0,

or,
T∆S −Q ≥ 0.

Then using the �rst law we can write, Q = ∆U +WT , where WT is the work done by the system

isothermally and thus we get,
T∆S −∆U −WT ≥ 0,

or,

WT ≤ T∆S −∆U

≤ ∆(TS − U)

≤ −∆F. (2)

where in going from the �rst and second step we used the constancy of T to write, T∆S = ∆(TS),
and in going from the second to third we have used the de�nition of the Helmholtz potential,
F ≡ U − TS. Hence the �rst part of the problem is proved.
For the next part we divide the work into two parts, namely the expansion work or �PdV � work
done by the system and the non-expansion work done by the system, lets say chemical or electrical
or magnetic work, W T (also done isothermally). Thus,

WT =

∫
PdV +W T .
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Substituting this in the LHS of (2) and then simplifying, we obtain

W T ≤ −∆F −
∫
PdV

Now if the pressure remains constant, one can write,
∫
PdV = P

∫
dV = P∆V = ∆(PV ). Thus for

constant pressure (and constant temperature) processes, one has,

W T ≤ −∆F −∆(PV )

≤ −∆(F + PV )

≤ −∆G.

Here in going from the second to the third step we have used the de�nition of the Gibbs function,
G = U − TS + PV = F + PV . Thus we have established that the maximal amount of non-

expansion work that can be extracted out of the system under isothermal and isobaric conditions
is equal to the change in the Gibbs function of the system.

3.

Taking P and V as independent variables, derive a third �TdS� equation, namely,

TdS =
CV κ

β
dP +

CP
βV

dV.

(4 points)

Solution

Taking P and V as independent variables, i.e. S = S(P, V ), the di�erential of entropy

dS =

(
∂S

∂P

)
V

dP +

(
∂S

∂V

)
P

dV

and multiplying both sides by T ,

TdS = T

(
∂S

∂P

)
V

dP + T

(
∂S

∂V

)
P

dV. (3)

Temporarily we revert to S as a function of V, T and we have,

∂S

∂P
=
∂S

∂V

∂V

∂P
+
∂S

∂T

∂T

∂P

so at constant volume, (
∂S

∂P

)
V

=

(
∂S

∂T

)
V

(
∂T

∂P

)
V

and similarly reverting temporarily to S being a function of P, T we obtain,(
∂S

∂V

)
P

=

(
∂S

∂T

)
P

(
∂T

∂V

)
P

.

Substituting these back in the intermediate form of the third �TdS� equation, we get,

TdS = T

(
∂S

∂T

)
V

(
∂T

∂P

)
V

dP + T

(
∂S

∂T

)
P

(
∂T

∂V

)
P

dV.
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Next we substitute the following,

T

(
∂S

∂T

)
V

=

(
TdS

dT

)
V

= CV ,

T

(
∂S

∂T

)
P

=

(
TdS

dT

)
P

= CP ,(
∂T

∂P

)
V

=
−1(

∂P
∂V

)
T

(
∂V
∂T

)
P

=
− 1
V

(
∂V
∂P

)
T

1
V

(
∂V
∂T

)
P

=
κ

β
,

(
∂T

∂V

)
P

=
1
V

1
V

(
∂V
∂T

)
P

=
1

βV
,

and obtain the �nal form of the third �TdS� equation,

TdS =
CV κ

β
dP +

CP
βV

dV. (4)

4.

From the two �TdS� equations covered in class, derive the �heat capacity equations�,

CP − CV =
Tβ2V

κ
.

CP
CV

=
κT
κS
.

where κT , κS are the isothermal and adiabatic (isentropic) compressibility respectively. From the �rst heat
capacity equation, show that for water at 4◦C, CP = CV .

(3 + 3 + 1 = 7 points)

Solution

The �rst two TdS equations are,

TdS = CV dT + T

(
∂T

∂P

)
V

dV

TdS = CPdT − T
(
∂V

∂T

)
P

dP.

and subtracting the two equations we get,

CPdT − T
(
∂V

∂T

)
P

dP = CV dT + T

(
∂T

∂P

)
V

dV,

rearranging which we get,

CP − CV = T

(
∂V

∂T

)
P

dP

dT
+ T

(
∂T

∂P

)
V

dV

dT

Now for constant volume processes this equation turns into,

CP − CV = T

(
∂V

∂T

)
P

(
∂P

∂T

)
V

. (5)
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Next, using the lemma, (
∂P

∂T

)
V

(
∂T

∂V

)
P

(
∂V

∂P

)
T

= −1

we get, (
∂P

∂T

)
V

=

(
∂V
∂T

)
P

−
(
∂V
∂P

)
T

=
1
V

(
∂V
∂T

)
P

− 1
V

(
∂V
∂P

)
T

=
β

κ
. (6)

Substituting (6) in (5) we obtain,

CP − CV = T

(
∂V

∂T

)
P︸ ︷︷ ︸

=βV

(
β

κ

)
=
Tβ2V

κ
.

Next starting from the 3rd TdS equation (4), we have for an isentropic process

0 =
CV κT
β

dPS +
CP
βV

dVS ,

where the subscript S denotes isentropic. Rearranging this we have,

CP
CV

= −κTV
dPS
dVS

=
κ

− 1
V

(
∂V
∂P

)
S

=
κ

κS
.

For water at 4◦C, the density is maximum i.e. for a �xed amount/mass the volume has a minima
as a function of temperature, (

∂V

∂T

)
P

= 0.

So inserting this in (5) we obtain
CP − CV = 0.

5.

Using the results from the preceding exercise, show that

κT − κS =
Tβ2V

CP

(3 points)

Solution:

The third �TdS � equation, for a (reversible) adiabatic process i.e. when dS = 0 becomes,

Cp
βV

dP +
CV κ

β
dV = 0,
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rearranging which gives,
CP
CV

=
κ

− 1
V

(
∂V
∂P

)
S

=
κ

κS
.

Thus,

κS =
κ

γ
.

Next we take the di�erence,

κ− κS = κ

(
γ − 1

γ

)
= κ

CP − CV
CP

.

Using the heat capacity equation,

CP − CV =
Tβ2V

κ
,

we get,

κ− κS =
Tβ2V

CP
.

6.

A hydrostatic system has the properties that
(
∂U
∂V

)
T
and

(
∂H
∂P

)
T

= 0. Show that the equation of state
must be T = AP V where A is some constant. (Hint: Use the internal energy and enthalpy equations).

(5 points)

Solution:

Combining the �rst law with the �rst TdS equation, we have the so called internal energy equation

dU = TdS − PdV

= CV dT +

[
T

(
∂P

∂T

)
V

− P
]
dV.

This implies, (
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P. (7)

Similarly using the second law with the second TdS equation, we have an equation for enthalpy
form,

dH = TdS + V dP

= CPdT +

[
V − T

(
∂V

∂T

)
P

]
dP.

This implies, (
∂H

∂P

)
T

= V − T
(
∂V

∂T

)
P

. (8)

In the present case, both
(
∂U
∂V

)
T

= 0 and
(
∂H
∂P

)
T

= 0 so we have,(
∂P

∂T

)
V

=
P

T
,

(
∂V

∂T

)
P

=
V

T
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or, (
∂T

∂P

)
V

=
T

P

(
∂T

∂V

)
P

=
T

V
.

Taking T as a function of P, V , we can write,

dT =

(
∂T

∂P

)
V

dP +

(
∂T

∂V

)
P

dV

=
T

P
dP +

T

V
dV,

=⇒ dT

T
=

dP

P
+
dV

V

=⇒ d ln

(
T

PV

)
= 0

=⇒ T = APV.

A is a constant of integration.

7.

Recall the Joule free expansion experiment, where a gas was con�ned on one side of a partitioned cylinder
while the other side was empty, and then the partition was suddenly removed/ broken so that the gas free
streamed and �lled out the entire cylinder. Using the energy and enthalpy equations, show that the Joule
coe�cient, η ≡

(
∂T
∂V

)
U
is given by,

η = − 1

CV

(
βT

κ
− P

)
.

Also recall the Joule-Thomson throttling experiment, where a gas was again con�ned on one side of a
partitioned cylinder, but this time the partition was porous and the gas was pushed into the other side
thru the porous partition (plug) with a di�erent yet constant pressures on both sides of the partition.
A measure of how the temperature drops as a result of this is given by the Joule-Thomson coe�cient,
µ ≡

(
∂T
∂P

)
H
. Show that,

µ =
V

Cp
(βT − 1) .

(4 + 4 = 8 points)

Solution:

One consider the state variables, U, V, T . Out of these only two are independent. Hence we have the
equation, (

∂T

∂V

)
U

(
∂V

∂U

)
T

(
∂U

∂T

)
V

= −1

or, (
∂T

∂V

)
U

= −
(
∂U
∂V

)
T(

∂U
∂T

)
V

From the internal energy equation in the last problem,(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P,
(
∂U

∂T

)
V

= CV .
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Using these,

η =

(
∂T

∂V

)
U

= −
T
(
∂P
∂T

)
V
− P

CV
= − 1

CV

(
βT

κ
− P

)
,

where in going from the penultimate to the last step we substituted:(
∂P

∂T

)
V

=
−1(

∂T
∂V

)
P

(
∂V
∂P

)
T

=
1
V

(
∂V
∂T

)
P

− 1
V

(
∂V
∂P

)
T

=
β

κ
.

Similarly, to compute the Joule-Thomson coe�cient we start with the identity involving (derivatives)
of H,P, T , (

∂T

∂P

)
H

=
−1(

∂P
∂H

)
T

(
∂H
∂T

)
P

= −
(
∂H
∂P

)
T(

∂H
∂T

)
P

=
T
(
∂V
∂T

)
P
− V

CP
=

V

CP
(Tβ − 1) .

where in the �nal step we have used one of the so called �enthalpy equations�
(
∂H
∂P

)
T

= V −T
(
∂V
∂T

)
P

from the last problem.

8.

Derive the relations, (
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

,

and, (
∂CP
∂P

)
T

= −T
(
∂2V

∂T 2

)
P

.

(3 + 3 = 6 points)

Solution:

From the �rst TdS equation, (
∂S

∂T

)
V

=
CV
T
,

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

Since the derivatives in the mixed second derivative can be taken in any order,(
∂

∂V

(
∂S

∂T

)
V

)
T

=

(
∂

∂T

(
∂S

∂V

)
T

)
V

=⇒
(
∂

∂V

(
CV
T

))
T

=

(
∂

∂T

(
∂P

∂T

)
V

)
V

=⇒
(
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

.

Similarly from the second TdS equation(
∂S

∂T

)
P

=
CP
T
,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

.
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Equating the (mixed) second derivatives in either order,(
∂

∂P

(
∂S

∂T

)
P

)
T

=

(
∂

∂T

(
∂S

∂P

)
T

)
P

=⇒
(
∂

∂P

(
CP
T

))
T

= −
(
∂

∂T

(
∂V

∂T

)
P

)
V

=⇒
(
∂CP
∂V

)
T

= −T
(
∂2V

∂T 2

)
P

.
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