EP 2827: Thermodynamics

Homework Set 4*

March 13, 2019

Solution

The condition for integrability of a differential form,
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In the case at hand, n = 3, x1 = =, x2 = y and x3 = z and,

is,

Yi=0, Y, =2, Ys=F.

Fori=1,j =2,k = 3, we evaluate the quantity in the lhs of the integrability equation,
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Thus the integrability condition is not satisfied and the given Pfaffian does not admit an integrating
factor.

*Due in class on Friday March 8th, 2019



Starting from the principle of increase of entropy of the universe, show that during an isothermal process
i.e. one in which a system remains in contact with a single reservoir at temperature say 1" throughout |,
the work done by the system is,

Wr < —AF,

where AF = Ftinal — Finitia s the change in Helmholtz potential; the equality holds when the process is
reversible. In addition if the process is occurring at constant external pressure, say P, the non-expansion
work or non-PdV work performed by the system satisfies,

Wrp < —AG,

where AG = G finai — Ginitial, 1 the change in the Gibbs potential; the equality holding when the process
is reversible. These inequalities justify the nomenclature of the thermodynamic potentials F, G is “free
energy”, i.e. the part of the internal energy which can be made free/available by a system to be converted
into mechanical energy (work) i.e. the amount of work that can be extracted from the system.

(2 + 2 = 4 points)

Solution: The principle of increase of entropy of the universe i.e. the combined entropy of the
system, call it S and the entropy of surroundings, call it Ssurroundings

AS + ASsm"roundings >0

Now during an isothermal process i.e. one in which a system remains in contact with a single reser-
voir at temperature say 7" throughout, the surroundings/reservoir undergoes a reversible isothermal
process in which let’s say it dumps some amount of heat, ) into the system. Then,

Assurroundings = _T

Thus we have,

- = >
AS ; 0,
or,

TAS —Q > 0.

Then using the first law we can write, Q = AU 4+ Wy, where Wy is the work done by the system
1sothermally and thus we get,
TAS — AU —Wr >0,

or,

Wr < TAS — AU
< A(TS-U)
< —AF. (2)

where in going from the first and second step we used the constancy of T' to write, TAS = A(T'S5),
and in going from the second to third we have used the definition of the Helmholtz potential,
F =U —TS. Hence the first part of the problem is proved.

For the next part we divide the work into two parts, namely the expansion work or “PdV” work
done by the system and the non-expansion work done by the system, lets say chemical or electrical
or magnetic work, W (also done isothermally). Thus,

Wr = /PdV + Wr.
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Substituting this in the LHS of (2) and then simplifying, we obtain
Wr < —AF — / Pdv

Now if the pressure remains constant, one can write, [ PdV = P [ dV = PAV = A(PV). Thus for
constant pressure (and constant temperature) processes, one has,

Wr < —AF — A(PV)
< —-A(F +PV)
< -AG.

Here in going from the second to the third step we have used the definition of the Gibbs function,
G=U-TS+ PV = F+ PV. Thus we have established that the maximal amount of non-
expanston work that can be extracted out of the system under isothermal and isobaric conditions
is equal to the change in the Gibbs function of the system.

Taking P and V as independent variables, derive a third “T'dS” equation, namely,

Cvlﬁ Cp
TdS = ——dP + —=dV.
B c1%
(4 points)
Solution
Taking P and V as independent variables, i.e. S = S(P, V), the differential of entropy
oS oS
dsS=|—-=| dP — | 4V
(o), 7+ (5v),
and multiplying both sides by T,
oS oS
TdS =T |—-—=| dP+T || dV. 3
(o), 7+ (5v), @

Temporarily we revert to S as a function of V,T and we have,
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(50), - (57), (5%),

and similarly reverting temporarily to S being a function of P,T" we obtain,

(5),- (), (5),

Substituting these back in the intermediate form of the third “T'dS” equation, we get,
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so at constant volume,



Next we substitute the following,

0
5} TdS
T(F)f(ﬁ)f@’
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and obtain the final form of the third “T'dS” equation,

Cvk Cp
TdS = ——dP + —=dV. 4
5 % (4)

Solution
The first two T'dS equations are,

oT
TdS =CydT +T | — dVv
e (6P>V

ov
TdS =Cpdl' =T <8—T>PdP.

and subtracting the two equations we get,

ov oT
CpdT — T (8_T)P dP =Cydl'+T (8_P)V dv,

rearranging which we get,

ov dP oT dv
CP_CV —T<6_T)PW+T<8—P)Vﬁ

Now for constant volume processes this equation turns into,

o1 (), (8),
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Next, using the lemma,

(), ), 39,

we get,
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Substituting (6) in (5) we obtain,

(v B\ T8V
et (Gr), (2) =5
N——

=BV

Next starting from the 3rd TdS equation (4), we have for an isentropic process

CvlﬁT C P
0= ——dPs+ ——dVg,
B 1%
where the subscript S denotes isentropic. Rearranging this we have,
C dP.
P TV_S
Cy dVg
B K
- 1 oV
v (8_)5
-
=

For water at 4°C, the density is maximum i.e. for a fixed amount/mass the volume has a minima

as a function of temperature,
oV
— | =0.
T ) p

Cp—Cy=0.

So inserting this in (5) we obtain

Solution:

The third “7TdS” equation, for a (reversible) adiabatic process i.e. when dS = 0 becomes,

Cp Cvk
——dP + ——dV =0,
sV B



rearranging which gives,

Cp K
o= oV =
Ov -3 (5p)s s
Thus,
K
Kg = —.
Y
Next we take the difference,
(=)
k—Ks = K|——
y
Cp—Cy
= K
Cp
Using the heat capacity equation,
TB*V
CP - CV = ﬁ 3
K
we get,
8%V
K—Kg = .
S Cr

A hydrostatic system has the properties that (g—g)T and (g—g)T = 0. Show that the equation of state
must be T'= A PV where A is some constant. (Hint: Use the internal energy and enthalpy equations).
(5 points)

Solution:

Combining the first law with the first TdS equation, we have the so called internal energy equation

dU = TdS — PdV

oP
= Cydl + {T <8T>V — P] av.

(),-7(%),

Similarly using the second law with the second TdS equation, we have an equation for enthalpy
form,

This implies,

dH TdS +VdP

= C’pdT%—{V—T(av) }dP.
P

orT
oH
oP
H

In the present case, both (g—g)T =0 and (8—P)T = 0 so we have,

orN _ P fOV V¥
or), T \oT)p T
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This implies,

:V—T(%)P. (8)
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or,

ory _T (0T _ T
opP), P \av), V'

Taking T' as a function of P, V', we can write,

or or
dI' = <8_P)Vdp+<W)PdV

T T
= FdP-i—VdV,

dr - dp v

T P 174

T
= dln (P_V> =0
= T = APV.

A is a constant of integration.

Solution:

One consider the state variables, U, V,T. Out of these only two are independent. Hence we have the

equation,
o\ (avY (OUN
oV )y \oU ), \ 0T V_
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From the internal energy equation in the last problem,
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Using these,
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where in going from the penultimate to the last step we substituted:
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Similarly, to compute the Joule-Thomson coefficient we start with the identity involving (derivatives)
of H, P, T,

[ -1 (g_g)T_T(g_V)P_V_l -
(or) =, e e e

where in the final step we have used one of the so called “enthalpy equations” (B_g)T =V-T (%)P

from the last problem.

Solution:

From the first 7dS equation,
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Since the derivatives in the mixed second derivative can be taken in any order,
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Equating the (mixed) second derivatives in either order,
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