
Page 1

U
s
in

g
 U

M
L

,
P

a
tt

e
rn

s
,
a

n
d

 J
a

v
a

O
b

je
c

t-
O

ri
e

n
te

d
 S

o
ft

w
a

re
 E

n
g

in
e

e
ri

n
g Software Engineering

CENG396

An Introduction

2

Dealing with Complexity

• Abstraction

• Decomposition

• Hierarchy

Page 2

3

1. Abstraction

• Inherent human limitation to deal with
complexity

• The 7 +- 2 phenomena

• Chunking: Group collection of objects

• Ignore unessential details => Models

4

Models are used to provide abstractions

• System Model

• Object Model: What is the structure of the system? What
are the objects and how are they related?

• Functional model: What are the functions of the system?
How is data flowing through the system?

• Dynamic model: How does the system react to external
events? How is the event flow in the system ?

• Task Model

• PERT Chart: What are the dependencies between the tasks?

• Schedule: How can this be done within the time limit?

• Org Chart: What are the roles in the project or organization?

• Issues Model

• What are the open and closed issues? What constraints were
posed by the client? What resolutions were made?

Page 3

5

Interdependencies of the Models

System Model (Structure,

Functionality,

Dynamic Behavior)

Issue Model

(Proposals,

Arguments,

Resolutions)

Task Model

(Organization,

Activities

Schedule)

7

Model-based Software Engineering:
Code is a derivation of object model

Problem Statement: A stock exchange lists many

companies.

Each company is identified by a ticker symbol.

public class StockExchange
{

public Vector m_Company = new Vector();

};

public class Company

{

public int m_tickerSymbol

public Vector m_StockExchange = new Vector();

};

Implementation phase results in code

Analysis phase results in cbject model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

A good software engineer writes as little code as possible

Page 4

8

2. Decomposition

• A technique used to master complexity (“divide
and conquer”)

• Functional decomposition

• The system is decomposed into modules

• Each module is a major processing step (function) in
the application domain

• Modules can be decomposed into smaller modules

• Object-oriented decomposition

• The system is decomposed into classes (“objects”)

• Each class is a major abstraction in the application
domain

• Classes can be decomposed into smaller classes

Which decomposition is the right one?

9

3. Hierarchy

• We got abstractions and decomposition

• This leads us to chunks (classes, objects) which we
view with object model

• Another way to deal with complexity is to
provide simple relationships between the chunks

• One of the most important relationships is
hierarchy

• 2 important hierarchies

• "Part of" hierarchy

• "Is-kind-of" hierarchy

Page 5

10

Part of Hierarchy

http://www.conradbock.org/relation4.html

11

Is-Kind-of Hierarchy (Taxonomy)

http://cs.lmu.edu/~ray/notes/devel/

Page 6

12

Software Lifecycle Activities ...and their
models

Subsystems

Structured By

class...

class...

class...

Source
Code

Implemented

By

Solution
Domain
Objects

Realized By

System

Design

Object

Design

Implemen-

tation
Testing

Application
Domain
Objects

Expressed in

Terms Of

Test
Cases

?

Verified

By

class....?

Requirements

Elicitation

Use Case
Model

Analysis

17

Summary

• Software engineering is a problem solving activity

• Developing quality software for a complex problem within a
limited time while things are changing

• There are many ways to deal with complexity

• Modeling, decomposition, abstraction, hierarchy

• Issue models: Show the negotiation aspects

• System models: Show the technical aspects

• Task models: Show the project management aspects

• Use patterns/styles: Reduce complexity even further

• Many ways to deal with change

• Tailor the software lifecycle to deal with changing project
conditions

• Use a nonlinear software lifecycle to deal with changing
requirements or changing technology

• Provide configuration management to deal with changing
entities

