Object-Oriented Software Engineering
Using UML, Patterns, and Java

Dealing with Complexity

« Abstraction
« Decomposition
« Hierarchy

Page 1

1. Abstraction

« Inherent human limitation to deal with
complexity
« The 7 +- 2 phenomena
« Chunking: Group collection of objects

- Ignore unessential details => Models

Models are used to provide abstractions

+ System Model

- Object Model: What is the structure of the system? What
are the objects and how are they related?

« Functional model: What are the functions of the system?
How is data flowing through the system?

« Dynamic model: How does the system react to external
events? How is the event flow in the system ?

- Task Model
« PERT Chart: What are the dependencies between the tasks?
» Schedule: How can this be done within the time limit?
+ Org Chart: What are the roles in the project or organization?
- Issues Model

« What are the open and closed issues? What constraints were
posed by the client? What resolutions were made?

Page 2

Interdependencies of the Models

System Model (Structure,
Functionality,
Dynamic Behavior)

| Model Task Model
ssue Mode (Organization,
(Proposals, Activities
Arguments,

Schedule
Resolutions)4 >)

Model-based Software Engineering:
Code is a derivation of object model
Problem Statement: A stock exchange lists many
companies.

EachroomaRy ieddratiiesidy AdeqUAYERAs Diagram):

StockExchange - Company
LIStS tickerSymbol

Implementation phase results in code

Fublic class StockExchange
public Vector m_Company = new Vector();
h

public class Company

{

public int m_tickerSymbol
public Vector m_StockExchange = new Vector();

h

A good software engineer writes as little code as possible

7

Page 3

2. Decomposition

« A technigue used to master complexity (“divide

and conquer”)

Functional decomposition
- The system is decomposed into modules

- Each module is a major processing step (function) in
the application domain

» Modules can be decomposed into smaller modules
Object-oriented decomposition
« The system is decomposed into classes (“objects”)

- Each class is a major abstraction in the application
domain

- Classes can be decomposed into smaller classes

Which decomposition is the right one?

. Hierarchy

We got abstractions and decomposition

« This leads us to chunks (classes, objects) which we
view with object model

Another way to deal with complexity is to
provide simple relationships between the chunks
One of the most important relationships is
hierarchy
2 important hierarchies

« "Part of" hierarchy

 "Is-kind-of" hierarchy

Page 4

Part of Hierarchy

Engine

BN

Piston

ar

Transmission

N

i_rankshaft

Gears

Shift

http://www.conradbock.org/relation4.html

Is-Kind-of Hierarchy (Taxonomy)

Animal

| Mammal |

| Primate | | Canine |<]_
JaN

o

Reptile |Bird |

Fox | Pelican |

Human

I

Chimpanzee

i

http://cs.Imu.edu/~ray/notes/devel/

11

Page 5

Software Lifecycle Activities ...and their
models

Requirements Analvsis System Object Implemen- Testin
Elicitation y Design Design tation 9
o—%
&S I |
- | | | Implemented
Expressed in Structured By Realized By By Verified
Terms Of l l By
' l '
E class... Lz ‘\;
! -_— —_— I\ ; class... B
=] é E—E class... o 2
?
s _ge class....t
Use Case Application Solution s
Model Domain Subsystems Domain ou‘rice Test
Objects Objects Code Cases
12
Summary

- Software engineering is a problem solving activity

- Developing quality software for a complex problem within a
limited time while things are changing

» There are many ways to deal with complexity
« Modeling, decomposition, abstraction, hierarchy
- Issue models: Show the negotiation aspects
+ System models: Show the technical aspects
- Task models: Show the project management aspects
- Use patterns/styles: Reduce complexity even further
- Many ways to deal with change

 Tailor the software lifecycle to deal with changing project
conditions

- Use a nonlinear software lifecycle to deal with changing
requirements or changing technology

« Provide configuration management to deal with changing
entities

17

Page 6

