
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ft
w

ar
e

En
gi

ne
er

in
g Software Engineering

CENG396

An Introduction

2

Software Engineering – What is?

•  Learn and apply methodologies, techniques,
workflows and tools to transform a problem
statement given by the customer into a software
system used by end users

Page 2

3

Motivation for Software Engineering

•  Complexity
•  Innovation
•  Flexibility
•  Recognition
•  Opportunities

4

Outline of Today’s Lecture

•  The development challenge
•  Dealing with change
•  Concepts: Abstraction, Modeling, Hierarchy
•  Methodologies
•  Course syllabus

Page 3

5

Can you develop this system?

6

Can you develop this system?

Page 4

7

Can you develop this system?

8

Can you develop this system?

The impossible
Fork

Page 5

9

Physical Model of the
Impossible Fork (Shigeo Fukuda)

https://www.youtube.com/watch?
v=1XfbiziIHmk&feature=youtu.be

Escher: Mathematical Art
https://www.youtube.com/watch?
v=Kcc56fRtrKU

10

Page 6

11

Why is software development difficult?

•  The problem domain (also called application
domain) is difficult

•  The solution domain is also difficult
•  The development process is difficult to

manage
•  Software offers extreme flexibility
•  Software is a discrete system

•  Continuous systems have no hidden surprises
•  Discrete systems can have hidden surprises! (Parnas)

David Lorge Parnas is an early pioneer in
software engineering who developed the

concepts of modularity and information hiding
in systems which are the foundation of

object oriented methodologies.

12

Software Engineering is more than writing
Code

•  Problem solving
•  Creating a solution
•  Engineering a system based on the solution

•  Modeling
•  Knowledge acquisition
•  Rationale management

Page 7

13

Techniques, Methodologies and Tools

•  Techniques
•  Formal procedures for producing results using some

well-defined notation

•  Methodologies
•  Collection of techniques applied across software

development and unified by a philosophical approach

•  Tools
•  Instruments or automated systems to accomplish a

technique
•  CASE = Computer Aided Software Engineering

14

Computer Science vs. Engineering

•  Computer Scientist
•  Assumes techniques and tools have to be developed.
•  Proves theorems about algorithms, designs languages,

defines knowledge representation schemes
•  Has infinite time…

•  Engineer
•  Develops a solution for a problem formulated by a

client
•  Uses computers & languages, techniques and tools

•  Software Engineer
•  Works in multiple application domains
•  Has only 3 months...
•  …while changes occurs in the problem formulation

(requirements) and also in the available technology.

Page 8

15

•  Software Engineering is a collection of
techniques, methodologies and tools that help
with the production of

a high quality software system developed with
a given budget before a given deadline while
change occurs

20

Challenge: Dealing with complexity and
change

Software Engineering: A Working Definition

16

Software Engineering:
 A Problem Solving Activity

•  Analysis
•  Understand the nature of the problem and break the

problem into pieces

•  Synthesis
•  Put the pieces together into a large structure

•  For problem solving we use techniques,
methodologies and tools.

Page 9

17

Focus: Acquire Technical Knowledge

•  Different methodologies (“philosophies”) to
model and develop software systems

•  Different modeling notations
•  Different modeling methods
•  Different software lifecycle models (empirical

control models, defined control models)
•  Different testing techniques (eg. vertical testing,

horizontal testing)
•  Rationale Management
•  Release and Configuration Management

18

Acquire Managerial Knowledge

•  Learn the basics of software project
management

•  Understand how to manage with a software
lifecycle

•  Be able to capture software development
knowledge (Rationale Management)

•  Manage change: Configuration Management
•  Learn the basic methodologies

•  Traditional software development
•  Agile methods

Page 10

19

Focus
Dealing with Complexity

•  Notations (UML, OCL)

•  Requirements Engineering,
Analysis and Design
•  OOSE, SA/SD, scenario-based

design, formal specifications

•  Testing
•  Vertical and horizontal testing

Dealing with Change
•  Rationale Management

•  Knowledge Management

•  Release Management
•  Big Bang vs Continuous

Integration

•  Software Life Cycle
•  Linear models
•  Iterative models
•  Activity-vs Entity-based

views

20

Software Engineering – Course Description

•  The course introduces the basic concepts of
software engineering, and modern tools and
well-known software development
methodologies e.g., waterfall technique,
iterative development, agile processes. The goal
is to train students design and document all
phases of software development life-cycle
starting from gathering software requirements,
software design methodologies, and software
testing. Topics such as software quality
assurance, project management are also
discussed.

Page 11

21

Objectives and Learning outcomes

•  Learn the basics of the software engineering
(SE) process life cycle.

•  Learn what the object-oriented (OO)
approach to software development is,
through OO principles and design patterns.

•  Learn UML (Unified Modeling Language) that is
part of most CASE (Computer Aided Software
Engineering) tools and the benefits of visual
modeling / diagramming.

•  Practice the application of principles of object-
oriented software development through the
course group project.

•  Develop teamwork and communication
skills through the course group project.

22

Textbook

•  Object-Oriented Software Engineering
Using UML, Patterns, and Java
Bernd Bruegge
Allen H. Dutoit
Pearson, (3rd Ed.)
ISBN 10: 1-292-02401-1

Page 12

23

Weekly Lectures (subject to change)

•  Introduction to SE (Ch 1)
•  Modeling w/ UML (Ch 2)
•  Project Organization and Communication (Ch 3)
•  Requirements Elicitation (Ch 4)
•  Analysis (Ch 5)
•  System Design (Ch 6 & 7)
•  Object Design (Ch 8 & 9)
•  Mapping Models to Code (Ch 10)
•  Testing (Ch 11)
•  Rational Management (Ch 12)
•  Configuration Management (Ch 13)
•  Project Management (Ch 14)
•  Project Life Cycle (Ch 15)

24

Lectures

•  Instructor
•  Prof. Dr. Erdogan Dogdu
•  Computer Eng. Dept.
•  Email: edogdu@cankaya.edu.tr
•  Web: http://edogdu.cankaya.edu.tr

•  Office hours
•  Wed 13:30-15:00

•  Lecture hours
•  3 hours/week
•  Sec1: Wed 09:20-11:10 (L111) and Thu 09:20-10:10

(L111)
•  Sec2: Wed 15:20-17:10 (L111) and Thu 10:20-11:10

(L111)

Page 13

25

Objectives of the Lectures

•  Appreciate the Fundamentals of Software
Engineering:
•  Methodologies
•  Process models
•  Description and modeling techniques
•  System analysis - Requirements engineering
•  System design
•  Implementation: Principles of system development

26

Assumptions for this Class

•  You have taken Object-Oriented (OO)
Programming (CENG241) course and passed

•  You know OO principles and an OO
programming language well,
such as Java, C++, or Python

Page 14

27

Grading

•  Attendance/Quiz/Assignments 15%
•  Midterm 15%
•  Project 40%
•  Final Exam 30%

28

Project

•  Develop a working software application
•  Team work (4 students each)
•  Agile software development methodology
•  Tools: GitHub and UML
•  Demo and presentation

Page 15

29

Course Communication

•  Web site
•  https://piazza.com/cankaya.edu.tr/spring2019/

ceng396/home
•  The lecture slides will be posted in PDF format after the

lecture is given
•  Email

•  Do you have an email client installed on your phone?
•  Do you get email notifications?
•  Make sure you get course updates regularly and on

time, all the time J

30

The End

•  Assignment: Read Ch.1 from the textbook

