
1

U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g
Chapter 2,

Modeling with UML, Part 1

2

Odds and Ends

• Reading for this Week:

• Chapter 1 and 2, Bruegge&Dutoit, Object-Oriented
Software Engineering

• Lectures Slides:

• Will be posted after each lecture.

2

3

Overview for the Lecture

• Three ways to deal with complexity

• Abstraction and Modeling

• Decomposition

• Hierarchy

• Introduction into the UML notation

• First pass on:

• Use case diagrams

• Class diagrams

• Sequence diagrams

• Statechart diagrams

• Activity diagrams

4

What is the problem with this Drawing?

3

5

Abstraction

• Complex systems are hard to understand

• The 7 +- 2 phenomena

• Our short term memory cannot store more than
7+-2 pieces at the same time -> limitation of the
brain

• TUM Phone Number: 498928918204

• Chunking

• Group collection of objects to reduce complexity

• 4 chunks:

• State-code, city-code, TUM-code, Office-Part

TUM Phone Number

State-Code City-Code TUM-code Office-Part

6

Abstraction

Phone Number

Country-Code City-Code Local Code Office-Part

• Chunking:

• Group collection of objects to reduce complexity

• State-code, city-code, TUM-code, Office-Part

• Complex systems are hard to understand

• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• TUM Phone Number: 498928918204

4

7

Abstraction

• Abstraction allows us to ignore unessential
details

• Two definitions for abstraction:

• Abstraction is a thought process where ideas are
distanced from objects

• Abstraction as activity

• Abstraction is the resulting idea of a thought process
where an idea has been distanced from an object

• Abstraction as entity

• Ideas can be expressed by models

8

Model

• A model is an abstraction
of a system

• A system that no longer exists

• An existing system

• A future system to be built.

5

9

We use Models to describe Software
Systems

• Object model: What is the structure of the
system?

• Functional model: What are the functions of the
system?

• Dynamic model: How does the system react to
external events?

• System Model: Object model + Functional model
+ Dynamic model

10

Other models used to describe Software
System Development

• Task Model

• PERT Chart: What are the dependencies between
tasks?

• Schedule: How can this be done within the time limit?

• Organization Chart: What are the roles in the project?

• Issues Model

• What are the open and closed issues?

• What blocks me from continuing?

• What constraints were imposed by the client?

• What resolutions were made?

• These lead to action items

6

11

Issue-Modeling

Issue:

What is the

Center of the

Universe?

Proposal1:

The earth!

Proposal2:

The sun!

Pro:

Copernicus

says so.

Pro:

Aristotle

says so.

Pro:

Change will disturb

the people.

Con:

Jupiter’s moons rotate

around Jupiter, not

around Earth.

12

Issue-Modeling

Issue:

What is the

Center of the

Universe?

Proposal1:

The earth!

Proposal2:

The sun!

Pro:

Copernicus

says so.

Pro:

Aristotle

says so.

Pro:

Change will disturb

the people.

Con:

Jupiter’s moons rotate

around Jupiter, not

around Earth.

Resolution (1615):

The church

decides proposal 1

is right

7

13

Issue-Modeling

Issue:

What is the

Center of the

Universe?

Proposal1:

The earth!

Proposal2:

The sun!

Pro:

Copernicus

says so.

Pro:

Aristotle

says so.

Pro:

Change will disturb

the people.

Con:

Jupiter’s moons rotate

around Jupiter, not

around Earth.

Resolution (1615):

The church

decides proposal 1

is right

Resolution (1998):

The church declares

proposal 1 was wrong

Proposal3:

Neither!

Pro:

Galaxies are moving away

From each other.

14

2. Technique to deal with Complexity:
Decomposition

• A technique used to master complexity
(“divide and conquer”)

• Two major types of decomposition

• Functional decomposition

• Object-oriented decomposition

• Functional decomposition

• The system is decomposed into modules

• Each module is a major function in the application
domain

• Modules can be decomposed into smaller modules.

8

15

Decomposition (cont’d)

• Object-oriented decomposition

• The system is decomposed into classes (“objects”)

• Each class is a major entity in the application domain

• Classes can be decomposed into smaller classes

• Object-oriented vs. functional decomposition

Which decomposition is the right one?

16

Functional Decomposition

Top Level functions

Level 1 functions

Level 2 functions

Machine instructions

System

Function

Load R10 Add R1, R10

Read Input Transform
Produce

Output

Transform
Produce

Output
Read Input

9

17

Functional Decomposition

• The functionality is spread all over the system

• Maintainer must understand the whole system
to make a single change to the system

• Consequence:

• Source code is hard to understand

• Source code is complex and impossible to maintain

• User interface is often awkward and non-intuitive.

18

Functional Decomposition

• The functionality is spread all over the system

• Maintainer must understand the whole system
to make a single change to the system

• Consequence:

• Source code is hard to understand

• Source code is complex and impossible to maintain

• User interface is often awkward and non-intuitive

• Example: Microsoft Powerpoint’s Autoshapes

• How do I change a square into a circle?

?

10

19

Changing a Square into a Circle

20

Autoshape

Functional Decomposition: Autoshape

Draw

Rectangle

Draw

Oval

Draw

Circle

Change Draw

Change

Rectangle

Change

Oval

Change

Circle

11

21

Object-Oriented View

Autoshape

Draw()

Change()

22

What is This?

Neck

Glove

Coat

Pocket

Cave

Ellbow

An Eskimo!

12

23

Nose
Eye

Ear

Chin

Mouth

Hair

A Face!

24

Nose
Eye

Ear

Chin

Mouth

Hair

Ellbow
Neck

Glove

Coat

Pocket

Cave

A Face!An Eskimo!

13

25

Class Identification

• Basic assumptions

• We can find the classes for a new software
system: Greenfield Engineering

• We can identify the classes in an existing
system: Reengineering

• We can create a class-based interface to an
existing system: Interface Engineering

26

Class Identification (cont’d)

• Why can we do this?

• Philosophy, science, experimental evidence

• What are the limitations?

• Depending on the purpose of the system,
different objects might be found

• Crucial

Identify the purpose of a system

14

27

3. Hierarchy

• So far we got abstractions

• This leads us to classes and objects

• “Chunks”

• Another way to deal with complexity is to
provide relationships between these chunks

• One of the most important relationships is
hierarchy

• 2 special hierarchies

• "Part-of" hierarchy

• "Is-kind-of" hierarchy

28

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)

Computer

Cache ALU Program

Counter

15

29

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

30

Where are we now?

• Three ways to deal with complexity:

• Abstraction, Decomposition, Hierarchy

• Object-oriented decomposition is good

• Unfortunately, depending on the purpose of the
system, different objects can be found

• How can we do it right?

• Start with a description of the functionality of a system

• Then proceed to a description of its structure

• Ordering of development activities

• Software lifecycle

16

31

Models must be falsifiable

• Karl Popper (“Objective Knowledge):

• There is no absolute truth when trying to understand reality

• One can only build theories, that are “true” until somebody
finds a counter example

• Falsification: The act of disproving a theory or hypothesis

• The truth of a theory is never certain. We must use
phrases like:

• “by our best judgement”, “using state-of-the-art knowledge”

• In software engineering any model is a theory:

• We build models and try to find counter examples by:

• Requirements validation, user interface testing, review of
the design, source code testing, system testing, etc.

• Testing: The act of disproving a model.

32

Concepts and Phenomena

• Phenomenon

• An object in the world of a domain as you perceive it

• Examples: This lecture at 9:35, my black watch

• Concept

• Describes the common properties of phenomena

• Example: All lectures on software engineering

• Example: All black watches

• A Concept is a 3-tuple:

• Name: The name distinguishes the concept from other
concepts

• Purpose: Properties that determine if a phenomenon is
a member of a concept

• Members: The set of phenomena which are part of the
concept.

17

33

Definition Abstraction:
• Classification of phenomena into concepts

Definition Modeling:
• Development of abstractions to answer specific questions

about a set of phenomena while ignoring irrelevant details.

MembersName

Watch

Purpose

A device that
measures time.

Concepts, Phenomena, Abstraction and
Modeling

34

Abstract Data Types & Classes

• Abstract data type
• A type whose implementation is

hidden from the rest of the system

• Class:
• An abstraction in the context of

object-oriented languages

• A class encapsulates state and
behavior

• Example: Watch

Watch

time
date

SetDate(d)

CalculatorWatch

EnterCalcMode()
InputNumber(n)

calculatorState
Unlike abstract data types, subclasses
can be defined in terms of other
classes using inheritance

State

Behavior

Inheritance

Subclass

• Example: CalculatorWatch

Superclass

18

35

Type and Instance

• Type:
• An concept in the context of programming languages

• Name: int

• Purpose: integral number

• Members: 0, -1, 1, 2, -2,…

• Instance:
• Member of a specific type

• The type of a variable represents all possible
instances of the variable

The following relationships are similar:
Type <–> Variable

Concept <–> Phenomenon

Class <-> Object

36

Systems

• A system is an organized set of communicating parts

• Natural system: A system whose ultimate purpose is not
known

• Engineered system: A system which is designed and built by
engineers for a specific purpose

• The parts of the system can be considered as
systems again

• In this case we call them subsystems

Examples of engineered systems:

• Airplane, watch, GPS

Examples of subsystems:

• Jet engine, battery, satellite.

Examples of natural systems:

• Universe, earth, ocean

19

37

Systems, Models and Views

• A model is an abstraction describing a
system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram, Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual
rules for depicting models and views:
• formal notations, “napkin designs”

38

System
View 1

Model 2

View 2

View 3

Model 1

Aircraft

Flightsimulator

Scale Model

Blueprints Electrical

Wiring

Fuel System

Views and models of a complex system usually overlap

(“Napkin” Notation)Systems, Models and Views

20

39

Systems, Models and Views

System View
*

Model
*

Depicted byDescribed by

Airplane:

System

Scale Model:Model Flight Simulator:Model

Fuel System:

View

Electrical Wiring:

View

Blueprints:

View

(UML Notation)

Class Diagram

Object Diagram

40

Model-Driven Development

1. Build a platform-independent model of an
applications functionality and behavior

a) Describe model in modeling notation (UML)

b) Convert model into platform-specific model

2. Generate executable from platform-specific
model

Advantages:

• Code is generated from model (“mostly”)

• Portability and interoperability

• Model Driven Architecture effort:

• http://www.omg.org/mda/

• OMG: Object Management Group

http://www.pearson-studium.de/main/main.asp?page=bookdetails&ProductID=111686

21

41

Reality: A stock exchange lists many companies. Each
company is identified by a ticker symbol

Analysis results in analysis object model (UML Class Diagram):

StockExchange Company

tickerSymbol
Lists

**

Implementation results in source code (Java):

public class StockExchange {

public m_Company = new Vector();

};

public class Company {

public int m_tickerSymbol;

public Vector m_StockExchange = new Vector();

};

Model-driven Software Development

42

Application vs Solution Domain

• Application Domain (Analysis):

• The environment in which the system is operating

• Solution Domain (Design, Implementation):

• The technologies used to build the system

• Both domains contain abstractions that we can
use for the construction of the system model.

22

43

Object-oriented Modeling

Application Domain

(Phenomena)

Solution Domain

(Phenomena)

System Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary

Display

TrafficControl

TrafficControl

UML

Package

(Analysis) (Design)

44

What is UML?

• UML (Unified Modeling Language)

• Nonproprietary standard for modeling software systems, OMG

• Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and collegues)

• Booch (Grady Booch)

• OOSE (Ivar Jacobson)

• Current Version: UML 2.2

• Information at the OMG portal http://www.uml.org/

• Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

• Open Source tools: ArgoUML, StarUML, Umbrello

• Commercial and Opensource: PoseidonUML (Gentleware)

23

45

UML: First Pass

• You can model 80% of most problems by using
about 20 % UML

• We teach you those 20%

• 80-20 rule: Pareto principle

• https://en.wikipedia.org/wiki/Pareto_principle

46

UML First Pass

• Use case diagrams

• Describe the functional behavior of the system as seen
by the user

• Class diagrams

• Describe the static structure of the system: Objects,
attributes, associations

• Sequence diagrams

• Describe the dynamic behavior between objects of the
system

• Statechart diagrams

• Describe the dynamic behavior of an individual object

• Activity diagrams

• Describe the dynamic behavior of a system, in
particular the workflow.

https://en.wikipedia.org/wiki/Pareto_principle

24

47

UML Core Conventions

• All UML Diagrams denote graphs of nodes and
edges
• Nodes are entities and drawn as rectangles or ovals

• Rectangles denote classes or instances

• Ovals denote functions

• Names of Classes are not underlined
• SimpleWatch

• Firefighter

• Names of Instances are underlined
• myWatch:SimpleWatch

• Joe:Firefighter

• An edge between two nodes denotes a
relationship between the corresponding entities

48

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system

from user’s point of view

Actor.

Use Case

System boundary

Classifier

25

49

Historical Remark: UML 1 used packages

WatchUser

Actor

Use casePackage
Watch

Use case diagrams represent the functionality of the system

from user’s point of view

ReadTime

SetTime

ChangeBattery

WatchRepairPerson

50

UML first pass: Class diagrams

Class

Association

Multiplicity

Class diagrams represent the structure of the system

2

1 1

1

1

1

1

2

SimpleWatch

Display Battery TimePushButton

26

51

UML first pass: Class diagrams

1

2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay Battery

Load

1

2

1

Time

Now

1

Watch

Operations

state

PushButton

Attribute

Class diagrams represent the structure of the system

Class

Association

Multiplicity

52

Message

UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system

as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()

commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

27

53

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting

dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking

54

Other UML Notations

UML provides many other notations, for example

• Deployment diagrams for modeling
configurations

• Useful for testing and for release management

• We introduce these and other notations as we
go along in the lectures

• OCL: A language for constraining UML models

28

55

What should be done first? Coding or Modeling?

• It all depends….

• Forward Engineering

• Creation of code from a model

• Start with modeling

• Greenfield projects

• Reverse Engineering

• Creation of a model from existing code

• Interface or reengineering projects

• Roundtrip Engineering

• Move constantly between forward and reverse
engineering

• Reengineering projects

• Useful when requirements, technology and schedule
are changing frequently.

56

UML Basic Notation Summary

• UML provides a wide variety of notations for
modeling many aspects of software systems

• Today we concentrated on a few notations:

• Functional model: Use case diagram

• Object model: Class diagram

• Dynamic model: Sequence diagrams, statechart

29

57

Additional References

• Martin Fowler

• UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed., Addison-Wesley, 2003

• Grady Booch,James Rumbaugh,Ivar Jacobson

• The Unified Modeling Language User Guide, Addison
Wesley, 2nd edition, 2005

• Commercial UML tools

• Rational Rose XDE for Java
• http://www-306.ibm.com/software/awdtools/developer/java/

• Together (Eclipse, MS Visual Studio, JBuilder)
• http://www.borland.com/us/products/together/index.html

• Open Source UML tools

• http://java-source.net/open-source/uml-modeling

• ArgoUML,UMLet,Violet, …

