
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 1

Example of a Problem Statement:
Introduction into

ARENA

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline

•  Problem Statement
•  Functional Requirements
•  Nonfunctional Requirements
•  User Interface
•  Object Model
•  System Decomposition
•  Deployment

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Problem Statement

•  The problem statement is developed by the
client as a description of the problem addressed
by the system

•  A problem statement describes
•  The current situation
•  The objectives
•  The functionality the new system should support
•  The environment in which the system will be deployed
•  Deliverables expected by the client
•  Delivery dates
•  A set of acceptance criteria.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Ingredients of a Problem Statement
1.  Current situation

•  The problem to be solved
•  Description of one or more scenarios

2.  Objectives
3.  Requirements

•  Functional and nonfunctional requirements
•  Constraints (“pseudo requirements”)

4.  Target environment
•  The environment in which the delivered system has to

perform a specified set of system tests

5.  Project schedule
•  Major milestones including deadline for delivery

6.  Client acceptance criteria
•  Criteria for the system tests.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Current situation: The problem to be solved

•  There is a problem in the current situation
•  Examples:

•  The response time when playing chess is too slow.
•  I want to play Go, but cannot find players on my

level.
•  What has changed? Why can address the

problem now?
•  Change in the application domain

•  A new function (business process) is introduced
into the business

•  Change in the solution domain
•  A new solution (technology enabler) has appeared

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

ARENA: The Current Situation

•  The Internet has enabled virtual communities
•  Multi-player computer games now include support

for virtual communities
•  Players can receive news about game upgrades, new

game levels, announcement of matches and scores
•  Currently each game company develops such

community support in each individual game
•  Each company uses a different infrastructure, different

concepts, and provides different levels of support
•  This redundancy leads to problems:

•  High learning curve for players joining a community
•  Game companies develop the support from scratch
•  Advertisers contact each community separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

ARENA: The Objectives

•  Provide a generic infrastructure to
•  Support virtual game communities.
•  Register new games
•  Register new players
•  Organize tournaments
•  Keeping track of the players scores.

•  Provide a framework for tournament organizers
•  to customize the number and sequence of matchers

and the accumulation of expert rating points.
•  Provide a framework for game developers

•  for developing new games, or for adapting existing
games into the ARENA framework.

•  Provide an infrastructure for advertisers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

ARENA: The Objectives (2)

•  Provide a framework for tournament
organizers
•  to customize the number and sequence of

matchers and the accumulation of expert
rating points

•  Provide a framework for game
developers
•  for developing new games, or for adapting

existing games into the ARENA framework
•  Provide an infrastructure for

advertisers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

ARENA Functional Requirements

•  Spectators must be able to watch
matches in progress without prior
registration and without prior
knowledge of the match

•  The operator must be able to add new
games.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

ARENA Nonfunctional Requirements

•  The system must support
•  10 parallel tournaments,
•  Each involving up to 64 players
•  and several hundreds of spectators.
•  The ARENA server must be available 24 hours a day

•  The operator must be able to add new games
 without modifications to the existing system
•  ARENA must be able to dynamically interface to

existing games provided by other game
developers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Constraints

•  Constraint: Any client restriction on the solution
domain and project management
•  Sometimes also called Pseudo Requirements
•  Constraints restrict the solution space

•  Example of constraints
•  Delivery constraints (“must be delivered before

Christmas”)
•  Organizational constraints (“must have a separate

testing team”)
•  Implementation constraints (“must be written in

Cobol”)
•  Target platform constraints (“must run on Windows

98”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

ARENA Target Environment

Example:
•  Users must be able to run ARENA games as

applets in any Web Browser
•  The web page must be validated through the W3C

Markup Validation Service
•  Interaction with the ARENA Server must be via
HTTP/1.1.

To be distinguished from development environment
•  “Prototypes will be built with Revolution 2.6.1”
•  “Games will be tested with Internet Explorer and

Firefox”
•  “The implementation language will be Java 1.4.2.”
•  “The IDE will be Eclipse 3.2”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Project Schedule

•  The project schedule is an optional part of the
problem statement
•  Managerial information
•  Often the seed for the schedule in the software project

management plan.

•  Lists only major milestones negotiated with the
client
•  3 to 4 dates (fixed dates!)

•  Example:
•  Project-kickoff April 15
•  System review May 15
•  Review of first prototype Jun 10
•  Client acceptance test July 30

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Client Acceptance Criteria

•  The system supports 10 parallel tournaments
with 64 players and 10 spectators per
tournament

•  The client supports the games Tic-Tac-Toe and
Asteroids

•  The average response time for a command
issued by a client is less than 1 second

•  The average up-time of the ARENA server during
one week of testing is 95%.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

(Initial) ARENA Models

•  Subsystem Decomposition
•  User Interface of Client
•  User Interface of Server
•  Object Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

ARENA Subsystem Decomposition

Tournament

Component
Management

User
Management

Tournament
Statistics

User Directory

User Interface

Session
Management

Advertisement

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

ARENA Object Model

Tournament

League

Game

Tournament
Style

Player

Round

Match

KOStyle

RoundRobin

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

ARENA Object Model (2)

Tournament

League

Game

TournamentStyle

Player

Round

Match

TicTacToe

Asteroids
KOStyle

RoundRobin

Move

MatchPanel
Factory MatchPanel creates

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

ARENA Instance-Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

ARENA User Interface (Client)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

ARENA User Interface (Server)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

More Information on ARENA
•  The ARENA Website:

http://sysiphus.in.tum.de/arena
•  The ARENA case study is described at the

end of each chapter, starting with Chapter 4
•  Read Chapter 4.6

