Example of a Problem Statement:
Intfroduction into
ARENA

Ovutline

 Problem Statement
 Functional Requirements
 Nonfunctional Requirements
 User Interface

 Object Model

e« System Decomposition
 Deployment

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Problem Statement

e The problem statement is developed by the
client as a description of the problem addressed
by the system

e A describes

The current situation

The objectives

The functionality the new system should support

The environment in which the system will be deployed
Deliverables expected by the client

Delivery dates

A set of acceptance criteria.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Ingredients of a Problem Statement

B Current situation
« The problem to be solved
 Description of one or more scenarios

> Objectives

> Requirements
e Functional and nonfunctional requirements
e Constraints (“pseudo requirements”)

] Target environment

« The environment in which the delivered system has to
perform a specified set of system tests

> Project schedule
* Major milestones including deadline for delivery

>| Client acceptance criteria
e Criteria for the system tests.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

Current situation: The problem to be solved

e There is a problem in the current situation
« Examples:
 The response time when playing chess is too slow.

I want to play Go, but cannot find players on my
level.

« What has changed? Why can address the
problem now?
« Change in the application domain

A new function (business process) is introduced
into the business

« Change in the solution domain
A new solution (technology enabler) has appeared

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

ARENA: The Current Situation

e The Internet has enabled virtual communities

o Multi-player computer games now include support
for virtual communities

* Players can receive news about game upgrades, new
game levels, announcement of matches and scores

Currently each game company develops such
community support in each individual game

 Each company uses a different infrastructure, different
concepts, and provides different levels of support

This redundancy leads to problems:
* High learning curve for players joining a community
« Game companies develop the support from scratch
e Advertisers contact each community separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

ARENA: The Objectives

Provide a generic infrastructure to
o Support virtual game communities.

Register new games

Register new players

Organize tournaments

Keeping track of the players scores.

Provide a framework for tournament organizers

* to customize the number and sequence of matchers
and the accumulation of expert rating points.

Provide a framework for game developers

« for developing new games, or for adapting existing
games into the ARENA framework.

Provide an infrastructure for advertisers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

ARENA: The Objectives (2)

e Provide a framework for tournament
organizers

» to customize the number and sequence of
matchers and the accumulation of expert
rating points

 Provide a framework for game
developers

» for developing new games, or for adapting
existing games into the ARENA framework

e Provide an infrastructure for
advertisers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

ARENA Functional Requirements

o Spectators must be able to
matches in progress without prior
registration and without prior
knowledge of the match

« The operator must be able to

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

ARENA Nonfunctional Requirements

e The system must support
e 10 parallel tournaments,
e Each involving up to 64 players
* and several hundreds of spectators.
« The ARENA server must be available 24 hours a day

« The operator must be able to
without modifications to the existing system

« ARENA must be able to dynamically interface to
existing games provided by other game
developers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Consiraints

 Constraint: Any client restriction on the solution
domain and project management

« Sometimes also called Pseudo Requirements
e Constraints restrict the solution space

« Example of constraints

o (“must be delivered before
Christmas”)

. (“must have a separate
testing team”)

. (“must be written in
Cobol”)

. (“must run on Windows
98”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

ARENA Target Environment

Example:

 Users must be able to run ARENA games as
applets in any Web Browser

« The web page must be validated through the W3C
Markup Validation Service

e Interaction with the ARENA Server must be via
HTTP/1.1.

To be distinguished from
 “Prototypes will be built with Revolution 2.6.1"

e “Games will be tested with Internet Explorer and
Firefox”

« “The implementation language will be Java 1.4.2.”
 “The IDE will be Eclipse 3.2”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

Project Schedule

 The project schedule is an optional part of the
problem statement

 Managerial information

» Often the seed for the schedule in the software project
management plan.

e Lists only major milestones negotiated with the
client

* 3 to 4 dates (fixed dates!)
« Example:

e Project-kickoff April 15

e System review May 15

» Review of first prototype Jun 10
* Client acceptance test July 30

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java El

Client Acceptance Ciriteria

e The system supports 10 parallel tournaments
with 64 players and 10 spectators per
tournament

 The client supports the games Tic-Tac-Toe and
Asteroids

« The average response time for a command
issued by a client is less than 1 second

« The average up-time of the ARENA server during
one week of testing is 95%.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

(Initial) ARENA Models

Object Model

Bernd Bruegge & Allen H. Dutoit

Subsystem Decomposition
User Interface of Client

User Interface of Server

Object-Oriented Software Engineering: Using UML, Patterns, and Java

15

ARENA Subsystem Decomposition

User Interface

N
Ve // N \\ S
7 / S ~ S o
/ N oS
7 7 / \ N e ~
7’ / '\ =~ ~
k L ~ ~
~
~
- Tournament S User
Advertisement [<€ -
o—- Management
-
- _ - - / \\ ~ [
/ - / A
/7 _- \ S :
& - / \ SO |
/ \ ~ Y
Component / \ N o
/ \ ~
Management ;
g / \\ A yser Directory
/ N\
. Tournament
MSe531on . Statistics
anagemen

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

ARENA Object Model

Game

League

?

Tournament
Style

Player

Tournament

?

KOStyle

Round

?

Bernd Bruegge & Allen H. Dutoit

Match

RoundRobin

Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

ARENA Object Model (2)

Game
TicTacToe
League TournamentStyle
Asteroids ? ~
Tournament KOStyle
? RoundRob1in
Round
Player — | Match -~ Move
MatchPanel |« MatchPanel |<>

Factory

bernd bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

18

ARENA Instance-Diagram

joe:MatchFrontEnd

alice vs joe:

e B — -

TicTacToeMatchPanel

o —

alice:MatchFrontEnd

‘ArenaServer

alice vs joe:

expert:League

TicTacToeMatchPanel

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

19

ARENA User Interface (Client)

‘® O O Playing alice, mark

|
X

X

O

Waiting for opponent to play

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

20

ARENA User Interface (Server)

&) O 6 | Welcome to ARENA alice

TicTacToe Leagues
¥ TTT Champions League[restricted, owner: bob] - A restricted league for insiders.
| TTT 2003 Championship - playing first round.
- TTT 2004 Championship - registration open
¥ Novice TTT League[owner: bob] - A simple, unrestricted league for beginners.
¥ TTT Cup - playing first round.
joe, mike- waiting for opponents
- alice, mark- match playing
mary - bye

Apply for tournament Accept player Launch tournament . Play match |

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

More Information on ARENA

« The ARENA Website:

http://sysiphus.in.tum.de/arena

« The ARENA case study is described at the
end of each chapter, starting with Chapter 4

d Ch 6 o -Toll- Alle)
° Rea C a pte r 4 . [< \ \ﬂ\ [A A | & || + | @ hup://sysiphus.informatik.tu-muenchen.de/arena/index.html

=l ARENA - ARENA

ARENA - ARENA

T“Tl Applied Software Engineering

Last published: 24 February 2005 | Doc for 0.9 [

Getting Started
Downloading ARENA
Starting ARENA
Developing a New
Game

Documents

» Problem Statement

» Requirements
Analysis Document

» System Design
Document

Project

Documentation
About ARENA

» Project Info

» Project Reports
Development
Process &

built by maven.

ARENA

About ARENA

CEE—

ARENA is a distributed, multi-user system for organizing and conducting tournamets.

ARENA is game independent in the sense that organizers can adapt a new game to the ARENA
game interface, upload it to the ARENA server, and announce and conduct tournaments with
players and spectators located anywhere on the Internet. Organizers can also define new
tournament styles, describing how players are mapped to a set of matches and how to
compute an overall ranking of players by adding up their victories and losses (and hence,
figuring out who won the tournament).

ARENA has been developed as a companion example for the book Object-Oriented Software
Engineering @. Our goal is to provide a non-trivial and living example for software engineering
education. With ARENA, an instructor can cover technical topics (e.g., access control,
concurrency control, dynamic class loading), and methodological topics (e.g applying design
patterns, specifying contracts). ARENA can also be used for supporting project courses in which
students extend or refine the system.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

