
U
si

ng
 U

M
L,

 P
at

te
rn

s, 
an

d 
Ja

va
O

bj
ec

t-O
ri

en
te

d 
So

ftw
ar

e 
En

gi
ne

er
in

g
Chapter 5: Analysis, 

Object Modeling 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        2

Outline 

Recall: System modeling = Functional modeling + 
Object modeling + Dynamic modeling 

ü Last week: Functional modeling 
•  Today: Object modeling 

•  Activities during object modeling 
•  Object identification 
•  Object types  

•  Entity, boundary and control objects 
•  Stereotypes 
•  Abott’s technique  

•  Helps in object identification. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        3

From Use Cases to Objects 
Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

  Level 2

  Level 1

  Level 2

  Level 3   Level 3

  Level 4   Level 4

  Level 3

 

A B



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        4

From Use Cases to Objects: Why Functional 
Decomposition is not Enough 

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

  Level 2

  Level 1

  Level 2

  Level 3   Level 3

  Level 4   Level 4

  Level 3

 

A B



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        5

Activities during Object Modeling 
Main goal: Find the important abstractions 
•  Steps during object modeling 

1. Class identification 
•  Based on the fundamental assumption that we can 

find abstractions 
2. Find the attributes 
3. Find the methods 
4. Find the associations between classes 

•  Order of steps 
•  Goal: get the desired abstractions 
•  Order of steps secondary, only a heuristic 

•  What happens if we find the wrong abstractions? 
•  We iterate and revise the model 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        6

Class Identification  

Class identification is crucial to object-oriented 
modeling 

•  Helps to identify the important entities of a system 

•  Basic assumptions:  
1. We can find  the  classes  for a new software system 

(Forward Engineering) 
2. We can identify the  classes in  an existing system  

(Reverse Engineering) 

•  Why can we do this?  
•  Philosophy, science, experimental evidence. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        7

Class Identification 

•  Approaches 
•  Application domain approach  

•  Ask application domain experts to identify relevant 
abstractions 

•  Syntactic approach 
•  Start with use cases 
•  Analyze the text to identify the objects 
•  Extract participating objects from flow of events 

•  Design patterns approach 
•  Use reusable design patterns 

•  Component-based approach  
•  Identify existing solution classes. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        8

Class identification is a Hard Problem 

•  One problem: Definition of the system 
boundary: 

•  Which abstractions are outside, which abstractions are 
inside the system boundary? 

•  Actors are outside the system 
•  Classes/Objects are inside the system. 

•  An other problem: Classes/Objects are not just 
found by taking a picture of a scene or domain 

•  The application domain has to be analyzed 
•  Depending on the purpose of the system different 

objects might be found 
•  How can we identify the purpose of a system? 
•  Scenarios and use cases => Functional model 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        9

There are different types of Objects 

•  Entity Objects 
•  Represent the persistent information tracked by the 

system (Application domain objects, also called 
“Business objects”) 

•  Boundary Objects 
•  Represent the interaction between the user and the 

system 
•  Control Objects  

•  Represent the control tasks performed by the system. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        10

Example: 2BWatch Modeling 

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects 

To distinguish different object types  
in a model we can use the  

UML Stereotype mechanism 



Naming Object Types in UML   
•  UML provides the stereotype mechanism to 

introduce new types of modeling elements 
•  A stereotype is drawn as a name enclosed by angled double-

quotes (“guillemets”) (<<, >>) and placed before the name of a 
UML element (class, method, attribute, ….)

•  Notation: <<String>>Name  
<<Entity>>

Year <<Control>>
ChangeDate

<<Boundary>>
Button

<<Entitity>>
Month

<<Entity>>
Day

<<Boundary>>
LCDDisplay

Entity Object Control Object Boundary Object 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        12

UML is an Extensible Language 
•  Stereotypes allow you to extend the vocabulary of the 

UML so that you can create new model elements, 
derived from existing ones

•  Examples: 
•  Stereotypes can also be used to classify method behavior such 

as <<constructor>>, <<getter>> or <<setter>>
•  To indicate the interface of a subsystem or system, one can 

use the stereotype <<interface>> (Lecture System Design)
•  Stereotypes can be represented with icons and 

graphics:
•  This can increase the readability of UML diagrams.



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        13

Icons for Stereotypes 

•  One can use icons to identify a stereotype 
•  When the stereotype is applied to a UML model element, the 

icon is displayed beside or above the name 

Entity Object Control Object Boundary Object 

Year ChangeDate Button

Actor 

WatchUser



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        14

Graphics for Stereotypes 

•  One can also use graphical symbols to identify a 
stereotype 

•  When the stereotype is applied to a UML model element, the 
graphic replaces the default graphic for the diagram element. 

•  Example: When modeling a network, define graphics for 
representing classes of type Switch, Server, Router, Printer,etc.

Graphics for 
Class of type

Router

Graphics for 
Class of type

Switch
Graphics for 
Server Class



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        15

Pros and Cons of Stereotype Graphics 

•  Advantages:
•  UML diagrams may be easier to understand if they contain 

graphics and icons for stereotypes
•  This can increase the readability of the diagram, especially 

if the  client is not trained in UML
•  And they are still UML diagrams!

•  Disadvantages: 
•  If developers are unfamiliar with the symbols being used, it can 

become much harder to understand what is going on 
•  Additional symbols add to the burden of learning to read the 

diagrams. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        16

Object Types allow us to deal with Change 

•  Having three types of object leads to models 
that are more resilient to change  

•  The interface of a system changes more likely than the 
control 

•  The way the system is controlled changes more likely 
than entities in the application domain 

•  Object types originated in Smalltalk: 
•  Model, View, Controller (MVC) 

     Model   <-> Entity Object 
       View  <-> Boundary Object 
Controller  <-> Control Object 

•  Next topic: Finding objects. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        17

Finding Participating Objects in Use Cases 

•  Pick a use case and look at flow of events   
•  Do a textual analysis (noun-verb analysis) 

•  Nouns are candidates for objects/classes  
•  Verbs are candidates for operations 
•  This is also called Abbott’s Technique 

•  After objects/classes are found, identify their 
types 

•  Identify real world entities that the system needs to 
keep track of (FieldOfficer → Entity Object) 

•  Identify real world procedures that the system needs 
to keep track of (EmergencyPlan → Control Object) 

•  Identify interface artifacts (PoliceStation → Boundary 
Object). 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        18

Example for using the Technique 

•  The customer enters the store to buy a 
toy. 

•  It has to be a toy that his daughter likes 
and it must cost less than 50 Euro. 

•  He tries a videogame, which uses a data 
glove and a head-mounted display. He likes 
it.

•  An assistant helps him. 
•  The suitability of the game depends on the 
age of the child. 

•  His daughter is only 3 years old. 
•  The assistant recommends another type of 
toy, namely the boardgame “Monopoly".

Flow of Events:



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        19

Mapping parts of speech to model 
components (Abbot’s Technique) 

 Part of speech

 Proper noun

 Improper noun

 Doing verb

 being verb

 having verb

 modal verb

 adjective

 transitive verb

 intransitive verb

UML model component

object

class

operation

inheritance 

aggregation

constraint

attribute

operation

Constraint, class,
 association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on



videogame

•  The customer enters the store 
to buy a toy. It has to be a 
toy that his daughter likes and 
it must cost less than 50 Euro. 
He tries a videogame, which 
uses a data glove and a head-
mounted display. He likes it.

Generating a Class Diagram from Flow of Events 

An assistant helps him. The 
suitability of the game depends 
on the age of the child. His 
daughter is only 3 years old. 
The assistant recommends another 
type of toy, namely a boardgame. 
The customer buy the game and 
leaves the store

customer enters

depends 

store
Customer

?

enter()

toy

daughter

suitable

*

less than 50

store

enter()

toy

buy()

toy

age

videogame

daughter

boardgame

Flow of events: 

Toy

price
buy()
like()

buy

type of toy
boardgame

daughter
age



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        21

Ways to find Objects  

•  Syntactical investigation with Abbot‘s technique: 
•  Flow of events  in use cases 
•  Problem statement 
 

•  Use other knowledge sources: 
•  Application knowledge: End users and experts know 

the abstractions of the application domain 
•  Solution knowledge: Abstractions in the solution 

domain 
•  General world knowledge: Your generic knowledge and 

intution 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        22

Order of Activities for Object Identification  

1.  Formulate a few scenarios with help from an 
end user or application domain expert 

2.  Extract the use cases  from the scenarios, with 
the help of an application domain expert 

3. Then proceed in parallel with the following: 
•  Analyse the flow of events in each use case 

using Abbot's textual analysis technique 
•  Generate the UML class diagram. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        23

Steps in Generating Class Diagrams  

1.  Class identification (textual analysis, domain 
expert)  

2.  Identification of attributes and operations 
(sometimes before the classes are found!) 

3.  Identification of associations between classes 
4.  Identification of multiplicities 
5.  Identification of roles 
6.  Identification of inheritance 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        24

Who uses Class Diagrams?  

•  Purpose of class diagrams 
•  The description of the static properties of a system 

•  The main users of class diagrams: 
•  The application domain expert 

•  uses class diagrams to model the application 
domain (including taxonomies) 

• during requirements elicitation and analysis 
•  The developer  

•  uses class diagrams  during the development of a 
system 

• during analysis, system design, object design 
and implementation. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        25

Who does not use Class Diagrams?  

•  The client and the end user are usually not 
interested in class diagrams  

•  Clients focus more on project management issues  
•  End users are more interested in the functionality of 

the system. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        26

Summary 

•  System modeling 
•  Functional modeling+object modeling+dynamic modeling 

•  Functional modeling 
•  From scenarios to use cases to objects 

•  Object modeling is the central activity 
•  Class identification is a major activity of object modeling 
•  Easy syntactic rules to find classes and objects 
•  Abbot’s Technique 

•  Class diagrams are the “center of the universe” 
for the object-oriented developer 

•  The end user focuses more on the functional model and 
and usability. 

 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        27

Additional Slides 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        28

What is This? 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        29

What is This? 

Face

Eye

1..2



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        30

Modeling in Action 

•  If it is a Face 
•  What are its Attributes?  
•  Sad, Happy 

•  Or is it a Mask? 
•  Investigate the  

functional model 
•  Who is using it? -> Actors 

•  Art collector  
•  Bankrobber 
•  Carnival participant 

•  How is it used? -> Event flow 

•  “Napkin design” of a Mask to be used at the 
Venetian Carnival 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        31

Pieces of an Object Model 

•  Classes and their instances (“objects”) 
•  Attributes 
•  Operations 
•  Associations between classes and objects 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        32

Associations 

 
•  Types of Associations  

•  Canonical associations 
•  Part-of Hierarchy (Aggregation) 
•  Kind-of Hierarchy (Inheritance) 

•  Generic associations 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        33

Attributes 

•  Detection of attributes is application specific 
•  Attributes in one system can be classes in 

another system 
•  Turning attributes to classes and vice versa 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        34

Operations 

•  Source of operations 
•  Use cases in the functional model  
•  General world knowledge  
•  Generic operations: Get/Set 
•  Design Patterns 
•  Application domain specific operations 
•  Actions and activities in the dynamic model 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        35

Object vs Class 

•  Object (instance): Exactly one thing 
•   This lecture on object modeling    

•  A class describes a group of objects with similar 
properties 

•  Game,  Tournament, mechanic, car, database 

•  Object diagram: A graphical notation for 
modeling objects, classes and their relationships 

•  Class diagram: Template for describing many instances 
of data. Useful for taxonomies, patters, schemata... 

•  Instance diagram: A particular set of objects relating to 
each other. Useful for discussing scenarios, test cases 
and examples 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        36

Developers have different Views on Class 
Diagrams 

•  According to the development activity, a 
developer plays different roles: 

•  Analyst 
•  System Designer 
•  Object Designer 
•  Implementor 

•  Each of these roles has a different view about 
the class diagram (the object model). 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        37

The View of the Analyst 

•  The analyst is interested  
•  in application classes: The associations between 

classes are relationships between abstractions in the 
application domain 

•  operations and attributes of the application classes 
(difference to E/R models!)  

•  The analyst uses inheritance in the model to 
reflect the taxonomies in the application domain 

•  Taxonomy:  An is-a-hierarchy of abstractions in an 
application domain 

•  The analyst is not interested  
•  in the exact signature of operations 
•  in solution domain classes 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        38

The View of the Designer 
•  The designer focuses on the solution of the 

problem, that is,  the solution domain 
•  The associations between classes are now 

references (pointers) between classes in the 
application or solution domain 

•  An important design task is the specification of  
interfaces:  

•  The designer describes the interface of classes and the 
interface of subsystems  

•  Subsystems originate from modules (term often used 
during analysis):  

•  Module: a collection of classes 
•  Subsystem: a collection of classes with an interface  

•  Subsystems are modeled in UML with a package. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        39

Goals of the Designer 

•  The most important design goals for the 
designer are design usability and design 
reusability 

•  Design usability: the interfaces are usable from 
as many classes as possible within in the 
system  

•  Design reusability:  The interfaces are designed 
in a way, that they can also be reused by other 
(future) software systems 

=> Class libraries 
=> Frameworks 
=> Design patterns. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        40

The View of the Implementor 

•  Class implementor 
•  Must realize the interface of a class in a programming 

language 
•  Interested in  appropriate data structures (for the 

attributes) and algorithms (for the operations) 
•  Class extender  

•  Interested in how to extend a class to solve a new 
problem or to adapt to a change in the application 
domain  

•  Class user 
•  The class user is interested in the signatures of the 

class operations and conditions,  under which they can 
be invoked 

•  The class user is not interested in the implementation 
of the class. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        41

Why do we distinguish different Users of 
Class Diagrams? 

•  Models often don‘t distinguish between 
application classes and  solution classes 

•  Reason: Modeling languages like UML  allow the use of 
both types of classes in the same model  

•  “address book“, “array" 
•  Preferred: No solution classes in the  analysis model  

•  Many systems don‘t distinguish between the 
specification and the implementation of a class 

•  Reason: Object-oriented programming languages allow 
the simultaneous use of specification and 
implementation of a class 

•  Preferred: We distinguish between analysis model and 
object design model. The analysis design model does 
not contain any implementation specification. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        42

Analysis Model vs. Object Design model 

•  The analysis model  is constructed during the 
analysis phase 

•  Main stake holders: End user, customer, analyst 
•  The class diagrams contains only application domain 

classes 

•  The object design model (sometimes also called 
specification model) is created during the object 
design phase 

•  Main stake holders: class  specifiers, class 
implementors, class users and class extenders 

•  The class diagrams contain application  domain as well 
as solution domain classes. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        43

Analysis Model vs Object Design Model (2) 

•  The analysis model is the basis for 
communication between analysts, application 
domain experts and end users.  

•  The object design model is  the basis for  
communication between designers and 
implementors.  



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        44

Summary 2 

•  System modeling 
•  Functional modeling+object modeling+dynamic modeling 

•  Functional modeling 
•  From scenarios to use cases to objects 

•  Object modeling is the central activity 
•  Class identification is a major activity of object modeling 
•  Easy syntactic rules to find classes and objects 
•  Abbot’s Technique 

•  Analysts, designers and implementors have 
different modeling needs 

•  There are three types of implementors with 
different roles during 

•  Class user, class implementor, class extender. 


