
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 6
System Design:

Decomposing the
System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Where are we?

•  We have covered Testing (Ch 11), Chapter on
Object Design (Ch 9), Requirements Eliciations (Ch
2), Analysis (Ch 3).

•  We are moving to Chapter 5 (System Design) and
6 (Addressing Design Goals).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Announcements

•  Mid-term exam:
•  Date, Time and Location:
•  Programming assignments in exercises will start next

week
•  Please bring your laptop to the exercise sessions
•  Please visit website and install prerequisites.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Design is Difficult

•  There are two ways of
constructing a software
design (Tony Hoare):

•  One way is to make it so simple
that there are obviously no
deficiencies

•  The other way is to make it so
complicated that there are no
obvious deficiencies.”

•  Corollary (Jostein Gaarder):
•  If our brain would be so simple

that we can understand it, we
would be too stupid to
understand it.

Sir Antony Hoare, *1934
-  Quicksort
-  Hoare logic for verification
-  CSP (Communicating Sequential  
 Processes): modeling language  
 for concurrent processes (basis  
 for Occam).

Jostein Gardner, *1952, writer
Uses metafiction in his stories:

Fiction which uses the device of fiction
- Best known for: „Sophie‘s World“.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Why is Design so Difficult?

•  Analysis: Focuses on the application domain
•  Design: Focuses on the solution domain

•  The solution domain is changing very rapidly
•  Halftime knowledge in software engineering: About

3-5 years
•  Cost of hardware rapidly sinking

Ø Design knowledge is a moving target

•  Design window: Time in which design decisions
have to be made.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

The Scope of System Design

•  Bridge the gap
•  between a problem and

an existing system in a
manageable way

Problem

Existing System

System
Design •  How?

•  Use Divide & Conquer:
1) Identify design goals
2) Model the new system

design as a set of
subsystems

3-8) Address the major
design goals.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

System Design: Eight Issues
System Design

2. Subsystem Decomposition
Layers vs Partitions
Coherence & Coupling

4. Hardware/
Software Mapping
Identification of Nodes
Special Purpose Systems
Buy vs Build
Network Connectivity

 5. Persistent Data
Management

Storing Persistent
Objects
Filesystem vs Database

Access Control
ACL vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure.

3. Identify Concurrency
Identification of
Parallelism
(Processes,
Threads)

7. Software
Control

Monolithic
Event-Driven
Conc. Processes

1. Identify Design Goals
Additional NFRs
Trade-offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Overview
System Design I (This Lecture)

0. Overview of System Design
1. Design Goals
2. Subsystem Decomposition, Software Architecture

System Design II (Next Lecture)
3. Concurrency: Identification of parallelism
4. Hardware/Software Mapping:

 Mapping subsystems to processors
5. Persistent Data Management: Storage for entity
objects
6. Global Resource Handling & Access Control:

 Who can access what?)
7. Software Control: Who is in control?
8. Boundary Conditions: Administrative use cases.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Monolithic
Event-Driven
Conc. Processes

7. Software
Control

2. System Decomposition
Layers vs Partitions
Coherence/Coupling

4. Hardware/
Software Mapping
Special Purpose Systems
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management

Persistent Objects
Filesystem vs
Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

3. Concurrency
Identification of
Threads

1. Design Goals
Definition
Trade-offs

Analysis Sources: Requirements and System Model

Object Model

Functional Model

 Functional Model

Dynamic
 Model

Dynamic
Model

Nonfunctional
Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

How the Analysis Models influence System
Design

•  Nonfunctional Requirements
=> Definition of Design Goals

•  Functional model
=> Subsystem Decomposition

•  Object model
=> Hardware/Software Mapping, Persistent Data

Management

•  Dynamic model
=> Identification of Concurrency, Global Resource

Handling, Software Control

•  Finally: Hardware/Software Mapping
=> Boundary conditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Monolithic
Event-Driven
Conc. Processes

7. Software
Control

2. System Decomposition
Layers vs Partitions
Coherence/Coupling

4. Hardware/
Software Mapping
Special Purpose Systems
Buy vs Build
Allocation of Resources
Connectivity

5. Data
Management
Persistent Objects
Filesystem vs
Database

Access Control List
vs Capabilities
Security

6. Global Resource
Handlung

8. Boundary
Conditions

Initialization
Termination
Failure

3. Concurrency
Identification of
Threads

1. Design Goals
Definition
Trade-offs

From Analysis to System Design

Object Model

Functional Model

 Functional Model

Dynamic
 Model

 Dynamic
 Model

Nonfunctional
Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Example of Design Goals
•  Reliability
•  Modifiability
•  Maintainability
•  Understandability
•  Adaptability
•  Reusability
•  Efficiency
•  Portability
•  Traceability of

requirements
•  Fault tolerance
•  Backward-compatibility
•  Cost-effectiveness
•  Robustness
•  High-performance

❖  Good documentation
❖  Well-defined interfaces
❖  User-friendliness
❖  Reuse of components
❖  Rapid development
❖  Minimum number of errors
❖  Readability
❖  Ease of learning
❖  Ease of remembering
❖  Ease of use
❖  Increased productivity
❖  Low-cost
❖  Flexibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

 Developer/
 Maintainer

Minimum # of errors
Modifiability, Readability
Reusability, Adaptability
Well-defined interfaces

Stakeholders have different Design Goals

Reliability

Low cost
Increased productivity
Backward compatibility
Traceability of requirements
Rapid development
Flexibility

Client
(Customer)

Portability
Good documentation

Runtime
Efficiency

End
User

Functionality
User-friendliness
Usability
Ease of learning
Fault tolerant
Robustness

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Typical Design Trade-offs

•  Functionality v. Usability
•  Cost v. Robustness
•  Efficiency v. Portability
•  Rapid development v. Functionality
•  Cost v. Reusability
•  Backward Compatibility v. Readability

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Subsystem Decomposition

•  Subsystem
•  Collection of classes, associations, operations, events

and constraints that are closely interrelated with each
other

•  The objects and classes from the object model are the
“seeds” for the subsystems

•  In UML subsystems are modeled as packages

•  Service
•  A set of named operations that share a common purpose
•  The origin (“seed”) for services are the use cases from

the functional model
•  Services are defined during system design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Tournament

Component
Management

User Management

Tournament
Statistics

User Directory

User Interface

Session
Management

Adds games, styles,
and expert rating

formulas

Stores user profiles
(contact info &
subscriptions)

Stores results of
archived

tournaments
Maintains state
during matches

Administers user
accounts

Advertisement

Manages
tournaments,promotions,

applications

Manages advertisement
banners & sponsorships

Example: Services
provided by the
ARENA Subsystems

Services
are described

 by subsystem interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Subsystem Interfaces vs API
•  Subsystem interface: Set of fully typed UML

operations
•  Specifies the interaction and information flow from and

to subsystem boundaries, but not inside the subsystem
•  Refinement of service, should be well-defined and small
•  Subsystem interfaces are defined during object design

•  Application programmer’s interface (API)
•  The API is the specification of the subsystem interface in

a specific programming language
•  APIs are defined during implementation

•  The terms subsystem interface and API are often
confused with each other

•  The term API should not be used during system design
and object design, but only during implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Example: Notification subsystem

•  Service provided by Notification Subsystem
•  LookupChannel()
•  SubscribeToChannel()
•  SendNotice()
•  UnscubscribeFromChannel()

•  Subsystem Interface of Notification Subsystem
•  Set of fully typed UML operations

•  Left as an Exercise

•  API of Notification Subsystem
•  Implementation in Java
•  Left as an Exercise.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Subsystem Interface Object

•  Good design: The subsystem interface object
describes all the services of the subsystem
interface

•  Subsystem Interface Object
•  The set of public operations provided by a subsystem

Subsystem Interface Objects can be realized with the
Façade pattern (=> lecture on design patterns).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Properties of Subsystems: Layers and
Partitions

•  A layer is a subsystem that provides a service to
another subsystem with the following
restrictions:

•  A layer only depends on services from lower layers
•  A layer has no knowledge of higher layers

•  A layer can be divided horizontally into several
independent subsystems called partitions

•  Partitions provide services to other partitions on the
same layer

•  Partitions are also called “weakly coupled” subsystems.

Relationships between Subsystems
•  Two major types of Layer relationships

•  Layer A “depends on” Layer B (compile time dependency)
•  Example: Build dependencies (make, ant, maven)

•  Layer A “calls” Layer B (runtime dependency)
•  Example: A web browser calls a web server
•  Can the client and server layers run on the same machine?

•  Yes, they are layers, not processor nodes
• Mapping of layers to processors is decided during the
Software/hardware mapping!

•  Partition relationship
•  The subsystems have mutual knowledge about each other

•  A calls services in B; B calls services in A (Peer-to-Peer)

•  UML convention:
•  Runtime dependencies are associations with dashed lines
•  Compile time dependencies are associations with solid lines.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

F:SubsystemE:Subsystem G:Subsystem

D:SubsystemC:SubsystemB:Subsystem

A:Subsystem Layer 1

Layer 2

Layer 3

Example of a Subsystem Decomposition

Layer
Relationship
„depends on“

Partition
relationship

Layer
Relationship

„calls“

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Tournament

Component
Management

User Management

Tournament
Statistics

User Directory

User Interface

Session
Management

Advertisement

ARENA Subsystem
Decomposition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Example of a Bad Subsystem
Decomposition

Advertisement

User Interface

Session
Management

User Management

Tournament
Statistics

Component
Management

Tournament

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Good Design: The System as set of Interface
Objects

User Interface

 Tournament

Component
Management

Session
Management

Tournament
Statistics

Advertisement

User
Management

Subsystem Interface Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Virtual Machine
•  A virtual machine is a subsystem connected to

higher and lower level virtual machines by
"provides services for" associations

•  A virtual machine is an abstraction that provides a
set of attributes and operations

•  The terms layer and virtual machine can be used
interchangeably

•  Also sometimes called “level of abstraction”.

Building Systems as a Set of Virtual Machines
A system is a hierarchy of virtual machines, each using

language primitives offered by the lower machines.

Virtual Machine 1

Virtual Machine 4 .

Virtual Machine 3

Virtual Machine 2

Existing System�
 Operating System, Libraries

Building Systems as a Set of Virtual Machines
A system is a hierarchy of virtual machines, each using

language primitives offered by the lower machines.

Virtual Machine 1

Existing System�
 Operating System, Libraries

Virtual Machine 2

Virtual Machine 3

Virtual Machine4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Closed Architecture (Opaque Layering)

•  Each virtual machine
can only call operations
from the layer below

VM1

VM2

VM3

VM4
C1ass1
attr
op

C1ass3
attr
op

C1ass2
attr
op

C1assE
attr
op

C1assF
attr
op

C1assC
attr
op

C1assD
attr
op

Class A
attr
op

C1ass B
attr
op

Design goals:
Maintainability,
flexibility.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Opaque Layering in ARENA

ArenaServer

Notification

ArenaClient

UserManagement

AdvertisementManagement

GameManagement

ArenaStorage

TournamentManagement

Interface

Storage

Application Logic

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Open Architecture (Transparent Layering)

•  Each virtual machine
can call operations
from any layer below

VM4

VM3

VM2

VM1
C1

attr
op

C1
attr
op

C1
attr
op

C1
attr
op

C1
attr
op

C1
attr
op

C1
attr
op

C1
attr
op

C1
attr
op

Design goal:
Runtime efficiency

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

•  Layered systems are hierarchical. This is a
desirable design, because hierarchy reduces
complexity

•  low coupling

•  Closed architectures are more portable
•  Open architectures are more efficient
•  Layered systems often have a chicken-and egg

problem

G: Operating System

D: File System

Properties of Layered Systems

A: Symbolic Debugger

Symbol Table

How do you open the
symbol table when you are

debugging the File
System?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Coupling and Coherence of Subsystems

•  Goal: Reduce system complexity while allowing
change

•  Coherence measures dependency among classes
•  High coherence: The classes in the subsystem perform

similar tasks and are related to each other via many
associations

•  Low coherence: Lots of miscellaneous and auxiliary
classes, almost no associations

•  Coupling measures dependency among
subsystems

•  High coupling: Changes to one subsystem will have high
impact on the other subsystem

•  Low coupling: A change in one subsystem does not affect
any other subsystem.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Coupling and Coherence of Subsystems

•  Goal: Reduce system complexity while allowing
change

•  Coherence measures dependency among classes
•  High coherence: The classes in the subsystem perform

similar tasks and are related to each other via
associations

•  Low coherence: Lots of miscellaneous and auxiliary
classes, no associations

•  Coupling measures dependency among
subsystems

•  High coupling: Changes to one subsystem will have high
impact on the other subsystem

•  Low coupling: A change in one subsystem does not affect
any other subsystem

Good Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

How to achieve high Coherence

•  High coherence can be achieved if most of the
interaction is within subsystems, rather than
across subsystem boundaries

•  Questions to ask:
•  Does one subsystem always call another one for a

specific service?
•  Yes: Consider moving them together into the same

subystem.
•  Which of the subsystems call each other for services?

•  Can this be avoided by restructuring the
subsystems or changing the subsystem interface?

•  Can the subsystems even be hierarchically ordered (in
layers)?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

How to achieve Low Coupling

•  Low coupling can be achieved if a calling class
does not need to know anything about the
internals of the called class (Principle of
information hiding, Parnas)

•  Questions to ask:
•  Does the calling class really have to know any

attributes of classes in the lower layers?
•  Is it possible that the calling class calls only operations

of the lower level classes?

David Parnas, *1941,
Developed the concept of

modularity in design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Architectural Style vs Architecture

•  Subsystem decomposition: Identification of
subsystems, services, and their association to
each other (hierarchical, peer-to-peer, etc)

•  Architectural Style: A pattern for a subsystem
decomposition

•  Software Architecture: Instance of an
architectural style.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Examples of Architectural Styles

•  Client/Server
•  Peer-To-Peer
•  Repository
•  Model/View/Controller
•  Three-tier, Four-tier Architecture
•  Service-Oriented Architecture (SOA)
•  Pipes and Filters

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Client/Server Architectural Style

•  One or many servers provide services to instances
of subsystems, called clients

Client

Server

+service1()
+service2()

+serviceN()

**

requester provider

•  Each client calls on the server, which performs
 some service and returns the result

The clients know the interface of the server
The server does not need to know the interface
of the client

•  The response in general is immediate
•  End users interact only with the client.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Client/Server Architectures

•  Often used in the design of database systems
•  Front-end: User application (client)
•  Back end: Database access and manipulation (server)

•  Functions performed by client:
•  Input from the user (Customized user interface)
•  Front-end processing of input data

•  Functions performed by the database server:
•  Centralized data management
•  Data integrity and database consistency
•  Database security

Design Goals for Client/Server Architectures

Location-
Transparency

Server runs on many operating systems
and many networking environments

 Server might itself be distributed, but
provides a single "logical" service to the
user
Client optimized for interactive display-
intensive tasks; Server optimized for
CPU-intensive operations

Server can handle large # of clients

User interface of client supports a
variety of end devices (PDA, Handy,
laptop, wearable computer)

Service Portability

High Performance

Reliability

Scalability

Flexibility

Server should be able to survive client
and communication problems.

 A measure of success with which the
observed behavior of a system confirms to the

specification of its behavior (Chapter 11: Testing)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Problems with Client/Server Architectures

•  Client/Server systems do not provide peer-to-
peer communication

•  Peer-to-peer communication is often needed
•  Example:

•  Database must process queries from application and
should be able to send notifications to the application
when data have changed

application1:DBUser

database:DBMS

1. updateData

application2:DBUser 2. changeNotification

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Peer-to-Peer Architectural Style
Generalization of Client/Server Architectural Style

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Introduction a new abstraction: Peer
“ ”
How do we model this statement? With Inheritance?

Proposal 1: “A peer can be either a client or a server”
Proposal 2: “A peer can be a client as well as a server”.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Relationship Client/Server & Peer-to-Peer
Problem statement

Which model is correct?
Model 1: “A peer can be either a client or a server”
Model 2: “A peer can be a client as well as a server”

 Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Client Server

✔?Model 1
Model 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Le
ve

l o
f
ab

st
ra

ct
io

n

Application

Presentation

Session

Transport

Network

DataLink

Physical

Example: Peer-to-Peer Architectural Style

•  ISO’s OSI Reference
Model

•  ISO = International
Standard Organization

•  OSI = Open System
Interconnection

•  Reference model which
defines 7 layers and
communication
protocols between the
layers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

OSI Model Layers and Services

•  The Application layer is the
system you are building (unless
you build a protocol stack)

•  The application layer is usually
layered itself

•  The Presentation layer performs
data transformation services,
such as byte swapping and
encryption

•  The Session layer is responsible
for initializing a connection,
including authentication

Application

Presentation

Session

Transport

Network

DataLink

Physical

!

OSI Model Layers and their Services

•  The Transport layer is responsible
for reliably transmitting messages

•  Used by Unix programmers who
transmit messages over TCP/IP sockets

•  The Network layer ensures
transmission and routing

•  Services: Transmit and route data
within the network

•  The Datalink layer models frames
•  Services: Transmit frames without

error

•  The Physical layer represents the
hardware interface to the network

•  Services: sendBit() and receiveBit()

Application

Presentation

Session

Transport

Network

DataLink

Physical

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

The Application Layer Provides the
Abstractions of the “New System”

ApplicationApplication

Presentation

Session

Transport

Network

Data Link

Physical

Bidirectional associa-
tions for each layer

Presentation

Session

Transport

Network

Data Link

Physical

Processor 1 Processor 2

RMI

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Application

Presentation

Session

Transport

Network

DataLink

Physical

Frame

Packet

Bit

Connection

Format

Message

An Object-Oriented View of the OSI Model

•  The OSI Model is a
closed software
architecture (i.e., it
uses opaque layering)

•  Each layer can be
modeled as a UML
package containing a
set of classes
available for the layer
above

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical

Bidirectional associa-
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical

Application Layer

Layer 1

Layer 2

Layer 3

Layer 4

Processor 1 Processor 2

Layer 1
Layer 2
Layer 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Middleware Allows Focus On Higher Layers

Application

Presentation

Session

Transport

Network

DataLink

Physical

Socket

Object

Wire

TCP/IP

CORBA

Ethernet

Abstraction provided
By Middleware Middleware

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Repository Architectural Style

•  Subsystems access and modify data from a single
data structure called the repository

•  Historically called blackboard architecture
 (Erman, Hayes-Roth and Reddy 1980)

•  Subsystems are loosely coupled (interact only
 through the repository)
•  Control flow is dictated by the repository
 through triggers or by the subsystems
 through locks and synchronization primitives

Subsystem

Repository

createData()
setData()
getData()
searchData()

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Blackboard Subsystem Decomposition

•  A blackboard-system consists
of three major components

•  The blackboard. A shared
repository of problems, partial
solutions and new information.

•  The knowledge sources (KSs).
Each knowledge source embodies
specific expertise. It reads the
information placed on the
blackboard and places new
information on the blackboard.

•  The control shell. It controls the
flow of problem-solving activity in
the system, in particular how the
knowledge sources get notified of
new information put into the
blackboard.

Raj Reddy, *1937, AI pioneer
 - Major contributions to
 speech, vision,robotics, e.g.
 Hearsay and Harpy
 - Founding Director of �
 Robotics Institute, HCII,
 Center for Machine Learning,etc
1994: Turing Award (with Ed
Feigenbaum).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Repository Architecture Example:
Incremental Development Environment (IDE)

LexicalAnalyzer

SyntacticAnalyzer
SemanticAnalyzer

CodeGenerator

Compiler

Optimizer

ParseTree SymbolTable

Repository

SyntacticEditor SymbolicDebugger

Parse
Tree

Symbol
Table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Providing Consistent Views
•  Problem: In systems with high coupling changes to the

user interface (boundary objects) often force changes
to the entity objects (data)

•  The user interface cannot be reimplemented without changing
the representation of the entity objects

•  The entity objects cannot be reorganized without changing the
user interface

•  Solution: Decoupling! The model-view-controller
architectural style decouples data access (entity
objects) and data presentation (boundary objects)

•  The Data Presentation subsystem is called the View
•  The Data Access subsystem is called the Model
•  The Controller subsystem mediates between View (data

presentation) and Model (data access)
•  Often called MVC.

Model-View-Controller Architectural Style
•  Subsystems are classified into 3 different types

Model subsystem: Responsible for application domain
knowledge

subscriber
notifier

*

1

initiator
repository1*

View subsystem: Responsible for displaying application
domain objects to the user
Controller subsystem: Responsible for sequence of
interactions with the user and notifying views of changes in
the model

Model

Controller

View

Class Diagram

Better understanding with a Collaboration Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

UML Collaboration Diagram

•  A Collaboration Diagram is an instance diagram that
visualizes the interactions between objects as a flow of
messages. Messages can be events or calls to operations

•  Communication diagrams describe the static structure as
well as the dynamic behavior of a system:

•  The static structure is obtained from the UML class diagram
•  Collaboration diagrams reuse the layout of classes and

associations in the class diagram
•  The dynamic behavior is obtained from the dynamic model (UML

sequence diagrams and UML statechart diagrams)
•  Messages between objects are labeled with a chronological

number and placed near the link the message is sent over
•  Reading a collaboration diagram involves starting at

message 1.0, and following the messages from object to
object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Example: Modeling the
Sequence of Events in MVC

:Controller

:Model1.0 Subscribe

:PowerpointView

4.0 User types new filename

7.0 Show updated views

:InfoView

5.0 Request name change in model

:FolderView

6.0 Notify subscribers

UML Collaboration Diagram

UML Class Diagram

3.0Subscribe

2.0Subscribe

subscriber
notifier

*

1

initiator
repository1*

Model

Controller

View

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

3-Layer-Architectural Style
3-Tier Architecture

Definition: 3-Layer Architectural Style
•  An architectural style, where an application consists of 3

hierarchically ordered subsystems
•  A user interface, middleware and a database system
•  The middleware subsystem services data requests

between the user interface and the database subsystem
Definition: 3-Tier Architecture

•  A software architecture where the 3 layers are allocated on 3
separate hardware nodes

•  Note: Layer is a type (e.g. class, subsystem) and Tier
is an instance (e.g. object, hardware node)

•  Layer and Tier are often used interchangeably.

Virtual Machines in 3-Layer Architectural Style

A 3-Layer Architectural Style is a hierarchy of 3 virtual
machines usually called presentation, application and
data layer

Data Layer

Presentation Layer
(Client Layer)

Application Layer
(Middleware,
Business Logic)

Existing System�
 Operating System, Libraries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

Example of a 3-Layer Architectural Style

•  Three-Layer architectural style are often used for the
development of Websites:

1. The Web Browser implements the user interface
2. The Web Server serves requests from the web browser
3. The Database manages and provides access to the persistent

data.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Example of a 4-Layer Architectural Style

4-Layer-architectural styles (4-Tier Architectures) are
usually used for the development of electronic
commerce sites. The layers are
1.  The Web Browser, providing the user interface
2.  A Web Server, serving static HTML requests
3.  An Application Server, providing session management (for

example the contents of an electronic shopping cart) and
processing of dynamic HTML requests

4.  A back end Database, that manages and provides access to
the persistent data
•  In current 4-tier architectures, this is usually a relational

Database management system (RDBMS).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

MVC vs. 3-Tier Architectural Style

•  The MVC architectural style is nonhierarchical (triangular):
•  View subsystem sends updates to the Controller subsystem
•  Controller subsystem updates the Model subsystem
•  View subsystem is updated directly from the Model subsystem

•  The 3-tier architectural style is hierarchical (linear):
•  The presentation layer never communicates directly with the

data layer (opaque architecture)
•  All communication must pass through the middleware layer

•  History:
•  MVC (1970-1980): Originated during the development of modular

graphical applications for a single graphical workstation at Xerox
Parc

•  3-Tier (1990s): Originated with the appearance of Web
applications, where the client, middleware and data layers ran on
physically separate platforms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

History at Xerox Parc

Xerox PARC (Palo Alto Research Center)
Founded in 1970 by Xerox, since 2002 a separate
company PARC (wholly owned by Xerox). Best known
for the invention of

•  Laser printer (1973, Gary Starkweather)
•  Ethernet (1973, Bob Metcalfe)
•  Modern personal computer (1973, Alto, Bravo)
•  Graphical user interface (GUI) based on WIMP

•  Windows, icons, menus and pointing device
• Based on Doug Engelbart´s invention  

of the mouse in 1965
•  Object-oriented programming (Smalltalk, 1970s, Adele

Goldberg)
•  Ubiquitous computing (1990, Mark Weiser).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

Pipes and Filters

•  A pipeline consists of a chain of processing
elements (processes, threads, etc.), arranged so
that the output of one element is the input to
the next element

•  Usually some amount of buffering is provided between
consecutive elements

•  The information that flows in these pipelines is often a
stream of records, bytes or bits.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

Pipes and Filters Architectural Style

•  An architectural style that consists of two subsystems
called pipes and filters

•  Filter: A subsystem that does a processing step
•  Pipe: A Pipe is a connection between two processing steps

•  Each filter has an input pipe and an output pipe.
•  The data from the input pipe are processed by the filter and

then moved to the output pipe
•  Example of a Pipes-and-Filters architecture: Unix

•  Unix shell command: ls -a l cat

A pipe
The Unix shell commands ls

and cat are Filter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

Additional Readings
•  E.W. Dijkstra (1968)

•  The structure of the T.H.E Multiprogramming system,
Communications of the ACM, 18(8), pp. 453-457

•  D. Parnas (1972)
•  On the criteria to be used in decomposing systems into

modules, CACM, 15(12), pp. 1053-1058

•  L.D. Erman, F. Hayes-Roth (1980)
•  The Hearsay-II-Speech-Understanding System, ACM

Computing Surveys, Vol 12. No. 2, pp 213-253

•  J.D. Day and H. Zimmermann (1983)
•  The OSI Reference Model,Proc. IEEE, Vol.71, 1334-1340

•  Jostein Gaarder (1991)
•  Sophie‘s World: A Novel about the History of Philosophy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

Summary

•  System Design
•  An activity that reduces the gap between the problem

and an existing (virtual) machine

•  Design Goals Definition
•  Describes the important system qualities
•  Defines the values against which options are evaluated

•  Subsystem Decomposition
•  Decomposes the overall system into manageable parts

by using the principles of cohesion and coherence

•  Architectural Style
•  A pattern of a typical subsystem decomposition

•  Software architecture
•  An instance of an architectural style
•  Client Server, Peer-to-Peer, Model-View-Controller.

