
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 8, Object Design:
Reuse and Patterns

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Object Design

•  Purpose of object design:
•  Prepare for the implementation of the system model

based on design decisions
•  Transform the system model (optimize it)

•  Investigate alternative ways to implement the
system model

•  Use design goals: minimize execution time, memory
and other measures of cost.

•  Object design serves as the basis of
implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Terminology: Naming of Design Activities

Methodology: Object-oriented software engineering (OOSE)
•  System Design

•  Decomposition into subsystems, etc

•  Object Design
•  Data structures and algorithms chosen

•  Implementation
•  Implementation language is chosen

System Development as a Set of Activities

Custom objects

Analysis

- System Design

 - Object Design

System Model

Design

Application objects

Solution objects

Existing Machine

Problem

Off-the-Shelf Components

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Object Design consists of 4 Activities

1. Reuse: Identification of existing solutions
•  Use of inheritance
•  Off-the-shelf components and

additional solution objects
•  Design patterns

2. Interface specification
•  Describes precisely each class interface

3. Object model restructuring
•  Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response
time or memory utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Object Design Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Detailed View of Object Design Activities
(ctd)

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Check Use Cases

Realizing associations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

One Way to do Object Design

1.  Identify the missing components in the design gap
2.  Make a build or buy decision to obtain the missing

component

 => Component-Based Software Engineering:
 The design gap is filled with available
components (“0 % coding”).

•  Special Case: COTS-Development

•  COTS: Commercial-off-the-Shelf
•  The design gap is completely filled with commercial-

off-the-shelf-components.

=> Design with standard components.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Identification of new Objects during Object
Design

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution

Domain)

Incident
Report

Text box Menu Scrollbar

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Application Domain vs Solution Domain Objects

Requirements Analysis (Language of Application Domain)

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer
*observers

Object Design (Language of Solution Domain)

ConcreteSubject
state

getState()
setState()

ConcreteObserver
observeState

update()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Other Reasons for new Objects

•  The implementation of algorithms may
necessitate objects to hold values

•  New low-level operations may be needed during
the decomposition of high-level operations

•  Example: EraseArea() in a drawing program
•  Conceptually very simple
•  Implementation is complicated:

•  Area represented by pixels
•  We need a Repair() operation to clean up objects

partially covered by the erased area
•  We need a Redraw() operation to draw objects

uncovered by the erasure
•  We need a Draw() operation to erase pixels in

background color not covered by other objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Modeling of the Real World

•  Modeling of the real world leads to a system that
reflects today’s realities but not necessarily
tomorrow’s.

•  There is a need for reusable and flexible
designs

•  Design knowledge such as the adapter pattern
complements application domain knowledge and
solution domain knowledge.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Reuse of Code

•  I have a list, but my customer would like to have a
stack

•  The list offers the operations Insert(), Find(), Delete()
•  The stack needs the operations Push(), Pop() and Top()
•  Can I reuse the existing list?

•  I am an employee in a company that builds cars
with expensive car stereo systems

•  Can I reuse the existing car software in a home stero
system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Reuse of existing classes

•  I have an implementation for a list of elements
of type int

•  Can I reuse this list to build
•  a list of customers
•  a spare parts catalog
•  a flight reservation schedule?

•  I have developed a class “Addressbook” in
another project

•  Can I add it as a subsystem to my e-mail program
which I purchased from a vendor (replacing the
vendor-supplied addressbook)?

•  Can I reuse this class in the billing software of my
dealer management system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Customization: Build Custom Objects

•  Problem: Close the object design gap
•  Develop new functionality

•  Main goal:
•  Reuse knowledge from previous experience
•  Reuse functionality already available

•  Composition (also called Black Box Reuse)
•  New functionality is obtained by aggregation
•  The new object with more functionality is an

aggregation of existing objects
•  Inheritance (also called White Box Reuse)

•  New functionality is obtained by inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Inheritance comes in many flavors

Inheritance is used in four ways:

•  Specialization
•  Generalization
•  Specification Inheritance
•  Implementation Inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Discovering Inheritance

•  To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

•  Generalization: the discovery of an inheritance
relationship between two classes, where
the sub class is discovered first.

•  Specialization: the discovery of an inheritance
relationship between two classes, where
the super class is discovered first.

Generalization Example: Modeling a
Coffee Machine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine
Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Restructuring of Attributes and Operations
is often a Consequence of Generalization

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

cansOfBeer
cansOfCola
chill()

SodaMachine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine

totalReceipts
cansOfBeer
cansOfCola
collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Called Remodeling if done on �
the model level;

Called Refactoring if done on �
the source code level.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

An Example of a Specialization

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

cansOfBeer
cansOfCola
chill()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseSnack()

CandyMachine

CandyMachine is a new
product and designed as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

 dispenseBeverage()
 and
 dispenseSnack()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Example of a Specialization (2)

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance
for Reuse Taxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

For Reuse: Implementation Inheritance and
Specification Inheritance

•  Implementation inheritance
•  Also called class inheritance
•  Goal:

•  Extend an applications’ functionality by reusing
functionality from the super class

•  Inherit from an existing class with some or all
operations already implemented

•  Specification Inheritance
•  Also called subtyping
•  Goal:

•  Inherit from a specification
•  The specification is an abstract class with all

operations specified, but not yet implemented.

❖  Problem with implementation inheritance:
•  The inherited operations might exhibit unwanted behavior.
•  Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List class, I need a

Stack class
 • How about subclassing the

Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()
Remove()

List

Push()
Pop()

Stack

Top()

“Already
 implemented”

Example for Implementation Inheritance

•  A very similar class is already implemented that
does almost the same as the desired class
implementation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Delegation instead of Implementation
Inheritance
•  Inheritance: Extending a Base class by a new

operation or overriding an operation.
•  Delegation: Catching an operation and sending it

to another object.
•  Which of the following models is better?

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

delegates to Client Receiver Delegate calls

Delegation

•  Delegation is a way of making composition as
powerful for reuse as inheritance

•  In delegation two objects are involved in
handling a request from a Client

• The Receiver object delegates operations to
the Delegate object
• The Receiver object makes sure, that the
Client does not misuse the Delegate object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Revised Metamodel for Inheritance

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for Reuse Taxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

Strict
Inheritance Contraction

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Documenting Object Design: ODD
Conventions

•  Each subsystem in a system provides a service
•  Describes the set of operations provided by the

subsystem
•  Specification of the service operations

•  Signature: Name of operation, fully typed parameter
list and return type

•  Abstract: Describes the operation
•  Pre: Precondition for calling the operation
•  Post: Postcondition describing important state after the

execution of the operation

•  Use JavaDoc and Contracts for the specification
of service operations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Package it all up
•  Pack up design into discrete units that can be

edited, compiled, linked, reused
•  Construct physical modules

•  Ideally use one package for each subsystem
•  System decomposition might not be good for

implementation.
•  Two design principles for packaging

•  Minimize coupling:
•  Classes in client-supplier relationships are usually

loosely coupled
•  Avoid large number of parameters in methods to

avoid strong coupling (should be less than 4-5)
•  Avoid global data

•  Maximize cohesion: Put classes connected by
associations into one package.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Packaging Heuristics

•  Each subsystem service is made available by
one or more interface objects within the package

•  Start with one interface object for each
subsystem service

•  Try to limit the number of interface operations (7+-2)

•  If an interface object has too many operations,
reconsider the number of interface objects

•  If you have too many interface objects,
reconsider the number of subsystems

•  Interface objects vs Java interface:
•  Interface object: Used during requirements analysis,

system design, object design. Denotes a service or API
•  Java interface: Used during implementation in Java

(May or may not implement an interface object).

