
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g Chapter 8, Object
Design

Introduction to Design
Patterns

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

•  During Object Modeling we do many transformations
and changes to the object model

•  It is important to make sure the object design model
stays simple!

•  Design patterns helps keep system models simple.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Finding Objects

•  The hardest problems in object-oriented system
development are:

•  Identifying objects
•  Decomposing the system into objects

•  Requirements Analysis focuses on application
domain:

•  Object identification

•  System Design addresses both, application and
implementation domain:

•  Subsystem Identification

•  Object Design focuses on implementation domain:
•  Additional solution objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Techniques for Finding Objects

•  Requirements Analysis
•  Start with Use Cases. Identify participating objects
•  Textual analysis of flow of events (find nouns, verbs, ...)
•  Extract application domain objects by interviewing client

(application domain knowledge)
•  Find objects by using general knowledge
•  Extract objects from Use Case scenarios (dynamic model)

•  System Design
•  Subsystem decomposition
•  Try to identify layers and partitions

•  Object Design
•  Find additional objects by applying implementation domain

knowledge

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Another Source for Finding Objects : Design
Patterns

•  What are Design Patterns?
•  The recurring aspects of designs are called design patterns

[Gamma et al 1995].
•  A pattern is the outline of a reusable solution to a general

problem encountered in a particular context.
•  It describes the core of the solution to that problem, in

such a way that you can use this solution a million times
over, without ever doing it the same twice. Many of them
have been systematically documented for all software
developers to use.

Studying patterns is an effective way to learn from the
experience of others

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

What is common between these definitions?

•  Definition Software System
•  A software system consists of subsystems which are either

other subsystems or collection of classes

•  Definition Software Lifecycle:
•  The software lifecycle consists of a set of development

activities which are either other actitivies or collection of
tasks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Introducing the Composite Pattern
•  Models tree structures that represent part-whole

hierarchies with arbitrary depth and width.
•  The Composite Pattern lets client treat individual

objects and compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Modeling a Software System with a Composite
Pattern

Software
System

Class Subsystem children

*
User

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Graphic Applications also use Composite
Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

•  The Graphic Class represents both primitives (Line, Circle)
and their containers (Picture)

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Reducing the Complexity of Models
•  To communicate a complex model we use navigation

and reduction of complexity
•  We do not simply use a picture from the CASE tool and

dump it in front of the user
•  The key is to navigate through the model so the user can

follow it
•  We start with a very simple model

•  Start with the key abstractions
•  Then decorate the model with additional classes

•  To reduce the complexity of the model further, we
•  Look for inheritance (taxonomies)

•  If the model is still too complex, we show subclasses on
a separate slide

•  Then we identify or introduce patterns in the model
•  We make sure to use the name of the patterns.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

*

Resource

Participant

Fund

Equipment

Schedule

Task

*

Activity

con-

Facility

*

Staff

Department Team

produces

Work Set of Work

*

ProductProducts

*

Internal Project

Work

respon-

sumes

Package

Role

*

des-

*

cribes

Deliverable

sible playsfor

Organi-
zation

Structure

**

depends

Work Product Project Function

Project

Outcome Work
Organizational

Unit

Work
Breakdown

Example: A Complex Model

Composite Patterns

TaxonomiesBasic Abstractions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Many design patterns use a
combination of inheritance and

delegation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Delegation
Inheritance

The adapter pattern uses inheritance as well as delegation:
- Interface inheritance is used to specify the interface of the Adapter class.
- Delegation is used to bind the Adapter and the Adaptee

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Adapter Pattern

•  The adapter pattern lets classes work together that
couldn’t otherwise because of incompatible interfaces

•  “Convert the interface of a class into another interface expected
by a client class.”

•  Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

•  Two adapter patterns:
•  Class adapter:

•  Uses multiple inheritance to adapt one interface to another
•  Object adapter:

•  Uses single inheritance and delegation

•  Object adapters are much more frequent.
•  We cover only object adapters (and call them adapters).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Bridge Pattern

•  Use a bridge to “decouple an abstraction from its
implementation so that the two can vary
independently”

•  Publish interface in an inheritance hierarchy, and bury
implementation in its own inheritance hierarchy.

•  Beyond encapsulation, to insulation
•  Also know as a Handle/Body pattern

•  Allows different implementations of an interface to
be decided upon dynamically.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Bridge Pattern

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Why the Name Bridge Pattern?

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Motivation for the Bridge Pattern

•  Decouples an abstraction from its implementation so
that the two can vary independently

•  This allows to bind one from many different
implementations of an interface to a client
dynamically

•  Design decision that can be realized any time during
the runtime of the system

•  However, usually the binding occurs at start up time of the
system (e.g. in the constructor of the interface class)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Using a Bridge
•  The bridge pattern can be used to provide multiple

implementations under the same interface

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example use of the Bridge Pattern:
Support multiple Database Vendors

LeagueStoreImplementor LeagueStore
imp

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Arena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Adapter vs Bridge

•  Similarities:
•  Both are used to hide the details of the underlying

implementation.

•  Difference:
•  The adapter pattern is geared towards making unrelated

components work together
•  Applied to systems after they’re designed

(reengineering, interface engineering).
•  “Inheritance followed by delegation”

•  A bridge, on the other hand, is used up-front in a design to
let abstractions and implementations vary independently.

•  Green field engineering of an “extensible system”
•  New “beasts” can be added to the “object zoo”, even if

these are not known at analysis or system design time.
•  “Delegation followed by inheritance”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Facade Pattern

•  Provides a unified interface to a set of objects in a
subsystem.

•  A facade defines a higher-level interface that makes
the subsystem easier to use (i.e. it abstracts out the
gory details)

•  Facades allow us to provide a closed architecture

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Design Example

•  Subsystem 1 can look into the
Subsystem 2 (vehicle
subsystem) and call on any
component or class operation
at will.

•  This is “Ravioli Design”
•  Why is this good?

•  Efficiency
•  Why is this bad?

•  Can’t expect the caller to
understand how the
subsystem works or the
complex relationships within
the subsystem.

•  We can be assured that the
subsystem will be misused,
leading to non-portable code

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Subsystem Design with Façade, Adapter,
Bridge

•  The ideal structure of a subsystem consists of
•  an interface object
•  a set of application domain objects (entity objects) modeling

real entities or existing systems
•  Some of the application domain objects are interfaces to

existing systems
•  one or more control objects

•  We can use design patterns to realize this subsystem
structure

•  Realization of the Interface Object: Facade
•  Provides the interface to the subsystem

•  Interface to existing systems: Adapter or Bridge
•  Provides the interface to existing system (legacy system)
•  The existing system is not necessarily object-oriented!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

When should you use these Design Patterns?
•  A façade should be offered by all subsystems in a

software system who a services
•  The façade delegates requests to the appropriate components

within the subsystem. The façade usually does not have to be
changed, when the components are changed

•  The adapter design pattern should be used to interface
to existing components

•  Example: A smart card software system should use an adapter
for a smart card reader from a specific manufacturer

•  The bridge design pattern should be used to interface
to a set of objects

•  where the full set of objects is not completely known at
analysis or design time.

•  when a subsystem or component must be replaced later after
the system has been deployed and client programs use it in
the field.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Summary
•  Design patterns are partial solutions to common

problems such as
•  such as separating an interface from a number of alternate

implementations
•  wrapping around a set of legacy classes
•  protecting a caller from changes associated with specific

platforms

•  A design pattern consists of a small number of classes
•  uses delegation and inheritance
•  provides a modifiable design solution

•  These classes can be adapted and refined for the
specific system under construction

•  Customization of the system
•  Reuse of existing solutions.

