
Chapter 8, Object Design: 
Design Patterns II 
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A Taxonomy of Design Patterns 
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The Proxy Pattern: 3 Types 

•  Caching of information (“Remote Proxy”) 
•  The Proxy object is a local representative for an object in a 

different address space 
•  Good if information does not change too often 

•  Standin  (“Virtual Proxy”) 
•  Object is too expensive to create or too expensive to 

download.  
•  Good if the real object is not accessed  too often 

•  Example: RealImage and ImageProxy 

•  Access control  (“Protection Proxy”) 
•  The proxy object provides protection for the real object 
•  Good when different actors should have different access and 

viewing rights for the same object  
•  Example: Grade information accessed by administrators, 

teachers and students. 
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Command Pattern: Motivation 

•  You want  to build a user interface  
•  You want to provide menus 
•  You want to make the menus reusable across many 

applications 
•  The applications only know what has to be done when a 

command from the menu is selected  
•  You don’t want to hardcode the menu commands for the 

various applications 
•  Such a user interface can easily be implemented 

with the Command Pattern.   



Command Pattern 

•  Client (in this case a user interface builder) creates a ConcreteCommand and binds it to 
an action operation in Receiver  

•  Client hands the ConcreteCommand over to the Invoker which stores it (for example in a 
menu) 

•  The Invoker has the responsibility to execute or undo a command (based on a string 
entered by the user) 

Command 
 

execute() 

Receiver 
 

action1() 
action2() 

Client 

Invoker 

ConcreteCommand1 
 

execute() 

«binds» 

ConcreteCommand2 
 

execute() 

«binds» 
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Comments to the Command Pattern 

•  The Command abstract class declares the interface 
supported by all ConcreteCommands.  

•  The client is a class in a user interface builder or in a 
class executing during startup  of the application to 
build the user interface.  

•  The client creates concreteCommands and binds 
them to specific Receivers, this can be strings like 
“commit”, “execute”, “undo”.  
•  So all user-visible commands are sub classes of the 

Command abstract class.  

•  The invoker - the class in the application program 
offering the menu of commands or buttons - invokes 
theconcreteCommand based on the string entered 
and the binding between action and 
ConcreteCommand. 
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Decouples boundary objects from control 
objects 

•  The command pattern can be nicely used to 
decouple boundary objects from control objects:   
•  Boundary objects such as menu items and buttons, send 

messages to the command objects (I.e. the control objects)  
•  Only the command objects modify entity objects 

•  When the user interface is changed (for example, a 
menu bar is replaced by a tool bar), only the 
boundary objects are modified. 
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Command Pattern  Applicability 

•  Parameterize clients with different requests 
•  Queue or log requests 
•  Support undoable operations 

•  Uses: 
•  Undo queues 
•  Database transaction buffering 
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Applying the Command Pattern to Command 
Sets  

GameBoard 

«binds» 
TicTacToeMove 

execute() 

ChessMove 

execute() 

Move 

execute() 

Match * 

replay() 
play() 
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Applying the Command design pattern to  
Replay Matches in ARENA 

replay() 

«binds» 

play() 

TicTacToeMove 

ChessMove 

Move 

execute() 

Match * 

GameBoard 

nextMove() 

ReplayedMatch 

previousMove() 



Observer Pattern Motivation 

•  Problem:  
•  We have an object that changes its state quite often 

•  Example: A Portfolio of stocks 
•  We want to provide multiple views of the current state 

of the portfolio 
•  Example:Histogram view, pie chart view, time line 

view, alarm 

•  Requirements:  
•  The system should maintain consistency across the 

(redundant) views, whenever the state of the 
observed object changes 

•  The system design should be highly extensible 
•  It should be possible to add new views without 

having to recompile the observed object or the 
existing views.   

Portfolio

Stock
*



Observer Pattern: Decouples an Abstraction from its Views 

Subject

subscribe(subscriber) 
unsubscribe(subscriber) 
notify() 

•  The Subject (“Publisher”) represents the entity object  
•  Observers (“Subscribers”) attach to the Subject by calling subscribe() 
•  Each Observer has a different view of the state of the entity object  

•  The state is contained in the subclass ConcreteSubject 
•  The state can be obtained and set by subclasses of type ConcreteObserver. 

update() 

Observer
*observers

ConcreteSubject
state 

getState() 
setState() 

ConcreteObserver
observeState 

update() 
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Observer Pattern 

•  Models a 1-to-many dependency between objects 
•  Connects the state of an observed object, the subject with 

many observing objects, the observers  

•  Usage: 
•  Maintaining consistency across redundant states 
•  Optimizing a batch of changes to maintain consistency  

•   Three variants for maintaining the consistency: 
•  Push Notification: Every time the state of the subject changes, 
all the observers are notified of the change 
•  Push-Update Notification: The subject also sends the state 

that has been changed to the observers 
•  Pull Notification: An observer inquires about the state the of 

the subject  

•  Also called Publish and Subscribe. 
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InfoView 
update() 

Observer 
update() 

* Subject 
subscribe() 

unsubscribe() 
notify() 

getState() 
setState() 

File 
-filename 

ListView 
update() 

PowerpointView 
update() 

Applying the Observer Pattern to maintain 
Consistency across Views 
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Strategy Pattern 

•  Different algorithms exists for a specific task 
•  We can switch between the algorithms at run time 

•  Examples of tasks: 
•  Different collision strategies for objects in video games 
•  Parsing a set of tokens into an abstract syntax tree (Bottom up, 

top down) 
•  Sorting a list of customers (Bubble sort, mergesort, quicksort) 

•  Different algorithms will be appropriate at different 
times 
•  First build, testing the system, delivering the final product 

•  If we need a new algorithm, we can add it without 
disturbing the application or the other algorithms. 
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Strategy Pattern 

Context

ContextInterface()
Strategy

AlgorithmInterface
*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context. 

Policy



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        17

Using a Strategy Pattern to Decide between 
Algorithms at Runtime 

              Database

SelectSortAlgorithm()
Sort()

*             SortInterface

Sort()

           BubbleSort

Sort()

             QuickSort

Sort()

                MergeSort

Sort()

                Policy
TimeIsImportant
SpaceIsImportant

           Client
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Supporting Multiple implementations of a 
Network Interface 

NetworkInterface 

open() 
close() 
send() 
receive() 

NetworkConnection 

send() 
receive() 
setNetworkInterface() 

Application 

Ethernet 

open() 
close() 
send() 
receive() 

WaveLAN 

open() 
close() 
send() 
receive() 

UMTS 

open() 
close() 
send() 
receive() 

 LocationManager 

Context =
{Mobile, Home, Office}
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Abstract Factory Pattern Motivation 
  

•  Consider a user interface toolkit that supports 
multiple looks and feel standards for different 
operating systems: 
•  How can you write a single user interface and make it 

portable across the different look and feel standards for 
these window managers? 

•  Consider a facility management system for an 
intelligent house that supports different control 
systems: 
•  How can you write a single control system that is 

independent from the manufacturer? 
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Abstract Factory 
 

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

 

CreateProductA
CreateProductB

ConcreteFactory1

 

CreateProductA
CreateProductB

ConcreteFactory2
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Applicability  for Abstract Factory Pattern 

•  Independence from Initialization or Representation 
•  Manufacturer Independence 
•  Constraints on related products 
•  Cope with upcoming change 
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Applying the Abstract Factory Pattern to 
Games 

Game 

Match 

TTTMatch ChessMatch 

Chess TicTacToe 

createMatch() 
createStats() 

Statistics 

TTTStats ChessStats 

Tournament 

createMatch() 
createStatistics() 

createMatch() 
createStats() 
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Clues in Nonfunctional Requirements for the 
Use of Design Patterns 

•  Text: “manufacturer independent”,  
         “device independent”,  

    “must support a family of products” 
=> Abstract Factory Pattern 

•  Text: “must interface with an existing object” 
=> Adapter Pattern 

•  Text: “must interface to several systems, some    
          of them to be developed in the future”,  

 “ an early prototype must be demonstrated” 
=>Bridge  Pattern 

•  Text:  “must interface to existing set of objects” 
=> Façade Pattern 
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Clues in Nonfunctional Requirements for  use of 
Design Patterns (2) 

•  Text: “complex structure”, 
    “must have variable depth and width”  

=> Composite Pattern 
•  Text:  “must be location transparent” 

=> Proxy  Pattern 
•  Text: “must be extensible”,  

    “must be scalable”  
=> Observer Pattern 

•  Text: “must provide a policy independent from  
          the mechanism” 
=> Strategy Pattern 
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Summary 

•  Composite, Adapter, Bridge, Façade, Proxy 
(Structural Patterns) 
•  Focus: Composing objects to form larger structures 

•  Realize new functionality  from old functionality,  
•  Provide flexibility and extensibility 

•  Command, Observer, Strategy, Template (Behavioral 
Patterns) 
•  Focus: Algorithms and assignment of responsibilities to 

objects 
•  Avoid tight coupling to a particular solution 

•  Abstract Factory, Builder (Creational Patterns) 
•  Focus: Creation of complex objects 

•  Hide how complex objects are created and put together 
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Conclusion 

Design patterns  
•  provide solutions to common problems 
•  lead to extensible models and code 
•  can be used as is or as examples of interface inheritance 

and delegation 
•  apply the same principles to structure and to behavior 

•  Design patterns solve a lot of your software 
development problems 
•  Pattern-oriented development 


