
Chapter 8, Object Design:
Design Patterns II

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
rie

nt
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

A Taxonomy of Design Patterns

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

The Proxy Pattern: 3 Types

•  Caching of information (“Remote Proxy”)
•  The Proxy object is a local representative for an object in a

different address space
•  Good if information does not change too often

•  Standin (“Virtual Proxy”)
•  Object is too expensive to create or too expensive to

download.
•  Good if the real object is not accessed too often

•  Example: RealImage and ImageProxy

•  Access control (“Protection Proxy”)
•  The proxy object provides protection for the real object
•  Good when different actors should have different access and

viewing rights for the same object
•  Example: Grade information accessed by administrators,

teachers and students.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Command Pattern: Motivation

•  You want to build a user interface
•  You want to provide menus
•  You want to make the menus reusable across many

applications
•  The applications only know what has to be done when a

command from the menu is selected
•  You don’t want to hardcode the menu commands for the

various applications
•  Such a user interface can easily be implemented

with the Command Pattern.

Command Pattern

•  Client (in this case a user interface builder) creates a ConcreteCommand and binds it to
an action operation in Receiver

•  Client hands the ConcreteCommand over to the Invoker which stores it (for example in a
menu)

•  The Invoker has the responsibility to execute or undo a command (based on a string
entered by the user)

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Comments to the Command Pattern

•  The Command abstract class declares the interface
supported by all ConcreteCommands.

•  The client is a class in a user interface builder or in a
class executing during startup of the application to
build the user interface.

•  The client creates concreteCommands and binds
them to specific Receivers, this can be strings like
“commit”, “execute”, “undo”.
•  So all user-visible commands are sub classes of the

Command abstract class.

•  The invoker - the class in the application program
offering the menu of commands or buttons - invokes
theconcreteCommand based on the string entered
and the binding between action and
ConcreteCommand.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Decouples boundary objects from control
objects

•  The command pattern can be nicely used to
decouple boundary objects from control objects:
•  Boundary objects such as menu items and buttons, send

messages to the command objects (I.e. the control objects)
•  Only the command objects modify entity objects

•  When the user interface is changed (for example, a
menu bar is replaced by a tool bar), only the
boundary objects are modified.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Command Pattern Applicability

•  Parameterize clients with different requests
•  Queue or log requests
•  Support undoable operations

•  Uses:
•  Undo queues
•  Database transaction buffering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Applying the Command Pattern to Command
Sets

GameBoard

«binds»
TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()
play()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Applying the Command design pattern to
Replay Matches in ARENA

replay()

«binds»

play()

TicTacToeMove

ChessMove

Move

execute()

Match *

GameBoard

nextMove()

ReplayedMatch

previousMove()

Observer Pattern Motivation

•  Problem:
•  We have an object that changes its state quite often

•  Example: A Portfolio of stocks
•  We want to provide multiple views of the current state

of the portfolio
•  Example:Histogram view, pie chart view, time line

view, alarm

•  Requirements:
•  The system should maintain consistency across the

(redundant) views, whenever the state of the
observed object changes

•  The system design should be highly extensible
•  It should be possible to add new views without

having to recompile the observed object or the
existing views.

Portfolio

Stock
*

Observer Pattern: Decouples an Abstraction from its Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

•  The Subject (“Publisher”) represents the entity object
•  Observers (“Subscribers”) attach to the Subject by calling subscribe()
•  Each Observer has a different view of the state of the entity object

•  The state is contained in the subclass ConcreteSubject
•  The state can be obtained and set by subclasses of type ConcreteObserver.

update()

Observer
*observers

ConcreteSubject
state

getState()
setState()

ConcreteObserver
observeState

update()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Observer Pattern

•  Models a 1-to-many dependency between objects
•  Connects the state of an observed object, the subject with

many observing objects, the observers

•  Usage:
•  Maintaining consistency across redundant states
•  Optimizing a batch of changes to maintain consistency

•  Three variants for maintaining the consistency:
•  Push Notification: Every time the state of the subject changes,
all the observers are notified of the change
•  Push-Update Notification: The subject also sends the state

that has been changed to the observers
•  Pull Notification: An observer inquires about the state the of

the subject

•  Also called Publish and Subscribe.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

InfoView
update()

Observer
update()

* Subject
subscribe()

unsubscribe()
notify()

getState()
setState()

File
-filename

ListView
update()

PowerpointView
update()

Applying the Observer Pattern to maintain
Consistency across Views

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Strategy Pattern

•  Different algorithms exists for a specific task
•  We can switch between the algorithms at run time

•  Examples of tasks:
•  Different collision strategies for objects in video games
•  Parsing a set of tokens into an abstract syntax tree (Bottom up,

top down)
•  Sorting a list of customers (Bubble sort, mergesort, quicksort)

•  Different algorithms will be appropriate at different
times
•  First build, testing the system, delivering the final product

•  If we need a new algorithm, we can add it without
disturbing the application or the other algorithms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Strategy Pattern

Context

ContextInterface()
Strategy

AlgorithmInterface
*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Policy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Using a Strategy Pattern to Decide between
Algorithms at Runtime

 Database

SelectSortAlgorithm()
Sort()

* SortInterface

Sort()

 BubbleSort

Sort()

 QuickSort

Sort()

 MergeSort

Sort()

 Policy
TimeIsImportant
SpaceIsImportant

 Client

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Supporting Multiple implementations of a
Network Interface

NetworkInterface

open()
close()
send()
receive()

NetworkConnection

send()
receive()
setNetworkInterface()

Application

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

 LocationManager

Context =
{Mobile, Home, Office}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Abstract Factory Pattern Motivation

•  Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:
•  How can you write a single user interface and make it

portable across the different look and feel standards for
these window managers?

•  Consider a facility management system for an
intelligent house that supports different control
systems:
•  How can you write a single control system that is

independent from the manufacturer?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Abstract Factory

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Applicability for Abstract Factory Pattern

•  Independence from Initialization or Representation
•  Manufacturer Independence
•  Constraints on related products
•  Cope with upcoming change

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Applying the Abstract Factory Pattern to
Games

Game

Match

TTTMatch ChessMatch

Chess TicTacToe

createMatch()
createStats()

Statistics

TTTStats ChessStats

Tournament

createMatch()
createStatistics()

createMatch()
createStats()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Clues in Nonfunctional Requirements for the
Use of Design Patterns

•  Text: “manufacturer independent”,
 “device independent”,

 “must support a family of products”
=> Abstract Factory Pattern

•  Text: “must interface with an existing object”
=> Adapter Pattern

•  Text: “must interface to several systems, some
 of them to be developed in the future”,

 “ an early prototype must be demonstrated”
=>Bridge Pattern

•  Text: “must interface to existing set of objects”
=> Façade Pattern

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Clues in Nonfunctional Requirements for use of
Design Patterns (2)

•  Text: “complex structure”,
 “must have variable depth and width”

=> Composite Pattern
•  Text: “must be location transparent”

=> Proxy Pattern
•  Text: “must be extensible”,

 “must be scalable”
=> Observer Pattern

•  Text: “must provide a policy independent from
 the mechanism”
=> Strategy Pattern

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Summary

•  Composite, Adapter, Bridge, Façade, Proxy
(Structural Patterns)
•  Focus: Composing objects to form larger structures

•  Realize new functionality from old functionality,
•  Provide flexibility and extensibility

•  Command, Observer, Strategy, Template (Behavioral
Patterns)
•  Focus: Algorithms and assignment of responsibilities to

objects
•  Avoid tight coupling to a particular solution

•  Abstract Factory, Builder (Creational Patterns)
•  Focus: Creation of complex objects

•  Hide how complex objects are created and put together

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Conclusion

Design patterns
•  provide solutions to common problems
•  lead to extensible models and code
•  can be used as is or as examples of interface inheritance

and delegation
•  apply the same principles to structure and to behavior

•  Design patterns solve a lot of your software
development problems
•  Pattern-oriented development

