
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 9,
Object Design:

Specifying
Interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Requirements Analysis vs. Object Design

•  Requirements Analysis: The functional model
and the dynamic model deliver operations for
the object model

•  Object Design: Decide where to put these
operations in the object model

•  Object design is the process of
•  adding details to the requirements analysis
•  making implementation decisions

•  Thus, object design serves as the basis of
implementation

•  The object designer can choose among different ways
to implement the system model obtained during
requirements analysis.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Object Design: Closing the Final Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requirements gap

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Developers play 3 different Roles during
Object Design of a Class

Developer Class Implementor

Class User

Class Extender

Call the Class

Realize the Class
(Implement it)

Refine the Class
(Implement a
 subclass)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Class User versus Class Extender

Game

TicTacToe Chess

League

Tournament

1

*

The developer responsible
for the implementation of

League is a class user of Game

The developer responsible for
the implementation of TicTacToe

is a class extender of Game

The Developer responsible
for the implementation of

Game is a class implementor

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Specifying Interfaces

•  Requirements analysis activities
•  Identify attributes and operations without specifying

their types or their parameters

•  Object design activities
•  Add visibility information
•  Add type signature information
•  Add contracts.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Add Visibility Information

Class user (“Public”): +
•  Public attributes/operation can be accessed by any class

Class implementor (“Private”): -
•  Private attributes and operations can be accessed only by

the class in which they are defined
•  They cannot be accessed by subclasses or other classes

Class extender (“Protected”): #
•  Protected attributes/operations can be accessed by the

class in which they are defined and by any descendent of
the class.

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Implementation of UML Visibility in Java

 public Tournament(League l, int maxNumPlayers)
 public int getMaxNumPlayers() {…};
 public List getPlayers() {…};
 public void acceptPlayer(Player p) {…};
 public void removePlayer(Player p) {…};
 public boolean isPlayerAccepted(Player p) {…};

Tournament

- maxNumPlayers: int

+ acceptPlayer(p:Player)
+ removePlayer(p:Player)

+ getMaxNumPlayers():int
+ getPlayers(): List

+ isPlayerAccepted(p:Player):boolean

public class Tournament {
 private int maxNumPlayers;

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Information Hiding Heuristics

•  Carefully define the public interface for classes
as well as subsystems

•  For subsystems use a façade design pattern if possible

•  Always apply the “Need to know” principle:
•  Only if somebody needs to access the information,

make it publicly possible
•  Provide only well defined channels, so you always

know the access

•  The fewer details a class user has to know
•  the easier the class can be changed
•  the less likely they will be affected by any changes in

the class implementation
•  Trade-off: Information hiding vs. efficiency

•  Accessing a private attribute might be too slow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

put()
get()
remove()
containsKey()
size()

numElements:int

Attributes and operations
without visibility and

type information are ok during
requirementsanalysis

During object design, we
decide that the hash
table can handle any
type of keys, not only

Strings.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Modeling Constraints with Contracts

•  Example of constraints in Arena:
•  An already registered player cannot be registered again
•  The number of players in a tournament should not be

more than maxNumPlayers
•  One can only remove players that have been registered

•  We model them with contracts.
•  These constraints can now be modeled in UML

since contacts can be written in OCL, which has
been made part of the UML standard.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Contracts and Formal Specification

•  Contracts enable the caller and the provider to
share the same assumptions about the class

•  A contract is an exact specification of the interface
of an object

•  A contract include three types of constraints:
•  Invariant:

•  A predicate that is always true for all instances of a
class

•  Precondition (“rights”):
•  Must be true before an operation is invoked

•  Postcondition (“obligation”):
•  Must be true after an operation is invoked.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Formal Specification

•  A contract is called a formal specification, if the
invariants, rights and obligations in the contract
are unambiguous.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Expressing Constraints in UML Models

•  A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Expressing Constraints in UML Models

•  A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Or using OCL: Object Constraint Language

•  Formal language for expressing constraints over
a set of objects and their attributes

•  Part of the UML standard
•  Used to write constraints that cannot otherwise

be expressed in a diagram
•  Declarative

•  No side effects
•  No control flow

•  Based on Sets and Multi Sets

