
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 10,
Mapping Models to

Code

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

State of the Art:
Model-based Software Engineering

•  The Vision
•  During object design we build an object design model

that realizes the use case model and it is the basis for
implementation (model-driven design)

•  The Reality
•  Working on the object design model involves many

activities that are error prone
•  Examples:

•  A new parameter must be added to an operation.
Because of time pressure it is added to the source
code, but not to the object model

•  Additional attributes are added to an entity object,
but the database table is not updated (as a result,
the new attributes are not persistent).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Other Object Design Activities

•  Programming languages do not support the
concept of a UML association

•  The associations of the object model must be
transformed into collections of object references

•  Many programming languages do not support
contracts (invariants, pre and post conditions)

•  Developers must therefore manually transform contract
specification into source code for detecting and handling
contract violations

•  The client changes the requirements during
object design

•  The developer must change the interface
specification of the involved classes

•  All these object design activities cause problems,
because they need to be done manually.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Solution

•  Let us get a handle on these problems
•  To do this we distinguish two kinds of spaces

•  the model space and the source code space

•  and 4 different types of transformations
•  Model transformation,
•  Forward engineering,
•  Reverse engineering,
•  Refactoring.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Model Transformation Example

Object design model before transformation:

Object design model
after transformation:

Advertiser

+email:Address

Player

+email:Address
LeagueOwner

+email:Address

Player Advertiser LeagueOwner

User

+email:Address

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Refactoring Example: Pull Up Field

public class Player {

 private String email;

 //...

}

public class LeagueOwner {

 private String eMail;

 //...

}

public class Advertiser {

 private String email_address;

 //...

}

public class User {
 private String email;

}
public class Player extends User {

 //...

}

public class LeagueOwner extends User {

 //...

}
public class Advertiser extends User {

 //...

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Refactoring Example: Pull Up Constructor Body
public class User {
 private String email;

}

public class Player extends User {
 public Player(String email) {
 this.email = email;
 }

}
public class LeagueOwner extends

User{
 public LeagueOwner(String email) {
 this.email = email;
 }

}
public class Advertiser extendsUser{
 public Advertiser(String email) {
 this.email = email;
 }

}

public class User {
 public User(String email) {
 this.email = email;
 }

}

public class Player extends User {
 public Player(String email) {
 super(email);
 }

}
public class LeagueOwner extends
User {

 public LeagueOwner(String email) {
 super(email);
 }

}
public class Advertiser extends User
{

 public Advertiser(String email) {
 super(email);
 }

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model
(in UML)

Another
System Model

Program
(in Java)

Another
Program

Yet Another
System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Forward Engineering Example

public class User {
 private String email;
 public String getEmail() {
 return email;
 }
 public void setEmail(String value){
 email = value;
 }
 public void notify(String msg) {
 //
 }

}

public class LeagueOwner extends User {

 private int maxNumLeagues;

 public int getMaxNumLeagues() {

 return maxNumLeagues;

 }

 public void setMaxNumLeagues

 (int value) {

 maxNumLeagues = value;

 }

}

User

Object design model before transformation:

Source code after transformation:

-email:String
+getEmail():String
+setEmail(e:String)
+notify(msg:String)

LeagueOwner
-maxNumLeagues:int
+getMaxNumLeagues():int
+setMaxNumLeagues(n:int)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

More Examples of Model Transformations
and Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

•  Collapsing objects
•  Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
•  Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Collapsing Objects

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation:

Object design model after transformation:

Turning an object into an attribute of another object is usually
done, if the object does not have any interesting dynamic behavior
 (only get and set operations).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

•  Collapsing objects
•  Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
•  Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Delaying expensive computations
Object design model before transformation:

Object design model after transformation:

Image

filename:String

paint()
data:byte[]

Image

filename:String

RealImage

data:byte[]

ImageProxy

filename:String

image

1 0..1

paint()

paint() paint()

Proxy Pattern!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

•  Collapsing objects
•  Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
•  Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Forward Engineering: Mapping a UML
Model into Source Code

•  Goal: We have a UML-Model with inheritance.
We want to translate it into source code

•  Question: Which mechanisms in the
programming language can be used?

•  Let’s focus on Java

•  Java provides the following mechanisms:
•  Overriding of methods (default in Java)
•  Final classes
•  Final methods
•  Abstract methods
•  Abstract classes
•  Interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Realizing Inheritance in Java

•  Realization of specialization and generalization
•  Definition of subclasses
•  Java keyword: extends

•  Realization of simple inheritance
•  Overriding of methods is not allowed
•  Java keyword: final

•  Realization of implementation inheritance
•  No keyword necessary:

•  Overriding of methods is default in Java
•  Realization of specification inheritance

•  Specification of an interface
•  Java keywords: abstract, interface

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

ü Collapsing objects
ü Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
ü Mapping inheritance
•  Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Mapping Associations

1.  Unidirectional one-to-one association
2.  Bidirectional one-to-one association
3.  Bidirectional one-to-many association
4.  Bidirectional many-to-many association
5.  Bidirectional qualified association.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Unidirectional one-to-one association

Account Advertiser
1 1

Object design model before transformation:

Source code after transformation:

public class Advertiser {
 private Account account;
 public Advertiser() {
 account = new Account();
 }
 public Account getAccount() {
 return account;
 }

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Bidirectional one-to-one association

public class Advertiser {

/* account is initialized

 * in the constructor and never

 * modified. */

 private Account account;

 public Advertiser() {

 account = new
Account(this);

 }

 public Account getAccount() {

 return account;

 }

}

Account Advertiser 1 1

Object design model before transformation:

Source code after transformation:
public class Account {

 /* owner is initialized

 * in the constructor and

 * never modified. */

 private Advertiser owner;

 publicAccount(owner:Advertiser) {

 this.owner = owner;

 }

 public Advertiser getOwner() {

 return owner;

 }

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Bidirectional one-to-many association

public class Advertiser {

 private Set accounts;

 public Advertiser() {

 accounts = new HashSet();
 }
 public void addAccount(Account a) {

 accounts.add(a);

 a.setOwner(this);
 }
 public void removeAccount(Account a) {
 accounts.remove(a);
 a.setOwner(null);
 }

}

public class Account {
 private Advertiser owner;
 public void setOwner(Advertiser
newOwner) {
 if (owner != newOwner) {
 Advertiser old = owner;
 owner = newOwner;
 if (newOwner != null)

 newOwner.addAccount(this);
 if (oldOwner != null)

 old.removeAccount(this);
 }
 }

}

Advertiser Account
1 *

Object design model before transformation:

Source code after transformation:

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Bidirectional many-to-many association

public class Tournament {
 private List players;
 public Tournament() {
 players = new ArrayList();
 }
 public void addPlayer(Player p)
{
 if (!players.contains(p)) {
 players.add(p);
 p.addTournament(this);
 }
 }

}

public class Player {
 private List tournaments;
 public Player() {
 tournaments = new
ArrayList();
 }
 public void
addTournament(Tournament t) {
 if (!
tournaments.contains(t)) {
 tournaments.add(t);
 t.addPlayer(this);
 }
 }

}

Tournament Player * *

Source code after transformation

{ordered}

Object design model before transformation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Bidirectional qualified association

Object design model after model transformation

Player nickName
0..1 * League

Player
* *

Object design model before model transformation

League

nickName

Source code after forward engineering (see next slide)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Bidirectional qualified association cntd.

public class League {

 private Map players;

 public void addPlayer
 (String nickName, Player p) {

 if (!
players.containsKey(nickName)) {

 players.put(nickName, p);

 p.addLeague(nickName, this);

 }

 }

}

public class Player {

 private Map leagues;

 public void addLeague

 (String nickName, League l) {

 if (!leagues.containsKey(l)) {

 leagues.put(l, nickName);

 l.addPlayer(nickName, this);

 }

 }

}

Object design model before forward engineering

Player nickName
0..1 * League

Source code after forward engineering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Examples of Model Transformations and
Forward Engineering

•  Model Transformations
•  Goal: Optimizing the object design model

ü Collapsing objects
ü Delaying expensive computations

•  Forward Engineering
•  Goal: Implementing the object design model in a

programming language
ü Mapping inheritance
ü Mapping associations
•  Mapping contracts to exceptions
•  Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Implementing Contract Violations

•  Many object-oriented languages do not have
built-in support for contracts

•  However, if they support exceptions, we can
use their exception mechanisms for signaling
and handling contract violations

•  In Java we use the try-throw-catch mechanism
•  Example:

•  Let us assume the acceptPlayer() operation of
TournamentControl is invoked with a player who is
already part of the Tournament

•  UML model (see slide 34)
•  In this case acceptPlayer() in TournamentControl

should throw an exception of type KnownPlayer
•  Java Source code (see slide 35).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

UML Model for Contract Violation Example

TournamentControl

Player
players *

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors *

*
*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Implementation in Java

public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
 }

}

TournamentControl

Player
players *

Tournament

1
1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1 1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors * *

*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

The try-throw-catch Mechanism in Java
public class TournamentControl {
 private Tournament tournament;
 public void addPlayer(Player p) throws KnownPlayerException
{
 if (tournament.isPlayerAccepted(p)) {
 throw new KnownPlayerException(p);
 }
 //... Normal addPlayer behavior
 }

}
public class TournamentForm {
 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 for (Iteration i = players.iterator(); i.hasNext();) {
 try {

 control.acceptPlayer((Player)i.next());
 }

 catch (KnownPlayerException e) {
 // If exception was caught, log it to console
 ErrorConsole.log(e.getMessage());
 }
 }
 }

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

TournamentControl

Player
players *

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches
*

+start:Date
+status:MatchStatus

-maNumPlayers:String
+start:Date
+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)
+removePlayer(p)
+isPlayerAccepted(p)

Advertiser
sponsors *

*
*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Implementing a Contract
•  Check each precondition:

•  Before the beginning of the method with a test to check
the precondition for that method

•  Raise an exception if the precondition evaluates to false

•  Check each postcondition:
•  At the end of the method write a test to check the

postcondition
•  Raise an exception if the postcondition evaluates to
false. If more than one postcondition is not satisfied,
raise an exception only for the first violation.

•  Check each invariant:
•  Check invariants at the same time when checking

preconditions and when checking postconditions
•  Deal with inheritance:

•  Add the checking code for preconditions and postconditions
also into methods that can be called from the class.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

A complete implementation of the
Tournament.addPlayer() contract

«precondition»
!isPlayerAccepted(p)

«invariant»
getMaxNumPlayers() > 0

«precondition»
getNumPlayers() <

getMaxNumPlayers()

Tournament

+isPlayerAccepted(p:Player):boolean
+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int
+getNumPlayers():int

«postcondition»
isPlayerAccepted(p)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Heuristics: Mapping Contracts to Exceptions

•  Executing checking code slows down your
program

•  If it is too slow, omit the checking code for private and
protected methods

•  If it is still too slow, focus on components with the
longest life

•  Omit checking code for postconditions and
invariants for all other components.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Heuristics for Transformations

•  For any given transformation always use the
same tool

•  Keep the contracts in the source code, not in the
object design model

•  Use the same names for the same objects
•  Have a style guide for transformations (Martin

Fowler)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Object Design Areas

1. Service specification
•  Describes precisely each class interface

2. Component selection
•  Identify off-the-shelf components and additional

solution objects
3. Object model restructuring

•  Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response time or memory
utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Design Optimizations

•  Design optimizations are an important part of
the object design phase:

•  The requirements analysis model is semantically
correct but often too inefficient if directly implemented.

•  Optimization activities during object design:
1. Add redundant associations to minimize access cost
2. Rearrange computations for greater efficiency
3. Store derived attributes to save computation time

•  As an object designer you must strike a balance
between efficiency and clarity.

•  Optimizations will make your models more obscure

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Design Optimization Activities
1. Add redundant associations:

•  What are the most frequent operations? (Sensor data
lookup?)

•  How often is the operation called? (30 times a month,
every 50 milliseconds)

2. Rearrange execution order
•  Eliminate dead paths as early as possible (Use

knowledge of distributions, frequency of path traversals)
•  Narrow search as soon as possible
•  Check if execution order of loop should be reversed

3. Turn classes into attributes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Implement application domain classes
•  To collapse or not collapse: Attribute or

association?
•  Object design choices:

•  Implement entity as embedded attribute
•  Implement entity as separate class with associations

to other classes
•  Associations are more flexible than attributes but

often introduce unnecessary indirection
•  Abbott's textual analysis rules.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Optimization Activities: Collapsing Objects

Student
Matrikelnumber

ID:String

Student

Matrikelnumber:String

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

To Collapse or not to Collapse?

•  Collapse a class into an attribute if the only
operations defined on the attributes are Set()
and Get().

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Design Optimizations (continued)

Store derived attributes
•  Example: Define new classes to store information

locally (database cache)

•  Problem with derived attributes:
•  Derived attributes must be updated when base values

change.
•  There are 3 ways to deal with the update problem:

•  Explicit code: Implementor determines affected
derived attributes (push)

•  Periodic computation: Recompute derived attribute
occasionally (pull)

•  Active value: An attribute can designate set of
dependent values which are automatically updated
when active value is changed (notification, data
trigger)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Summary

•  Four mapping concepts:
•  Model transformation
•  Forward engineering
•  Refactoring
•  Reverse engineering

•  Model transformation and forward engineering
techniques:

•  Optiziming the class model
•  Mapping associations to collections
•  Mapping contracts to exceptions
•  Mapping class model to storage schemas

