
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g
Chapter 10,
Mapping Models to
Relational Schema

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Lecture Plan

•  Last lecture:
•  Operations on the object model:

•  Optimizations to address performance requirements
•  Implementation of class model components:

•  Realization of associations
•  Realization of operation contracts

•  This lecture:
•  Realizing entity objects based on selected storage

strategy
•  Mapping the object model to a database
•  Mapping class diagrams to tables.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Mapping an Object Model to a Database

•  UML object models can be mapped to relational
databases:

•  Some degradation occurs because all UML constructs
must be mapped to a single relational database
construct - the table

•  Mapping of classes, attributes and associations
•  Each class is mapped to a table
•  Each class attribute is mapped onto a column in the

table
•  An instance of a class represents a row in the table
•  A many-to-many association is mapped into its own

table
•  A one-to-many association is implemented as buried

foreign key

•  Methods are not mapped.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Mapping a Class to a Table

User

+firstName:String
+login:String
+email:String

id:long firstName:text[25] login:text[8] email:text[32]

User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Primary and Foreign Keys

•  Any set of attributes that could be used to
uniquely identify any data record in a relational
table is called a candidate key

•  The actual candidate key that is used in the
application to identify the records is called the
primary key

•  The primary key of a table is a set of attributes whose
values uniquely identify the data records in the table

•  A foreign key is an attribute (or a set of
attributes) that references the primary key of
another table.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Example for Primary and Foreign Keys
User table

Candidate key

login email
“am384” “am384@mail.org”
“js289” “john@mail.de”

firstName
“alice”
“john”

“bd” “bobd@mail.ch”“bob”

Candidate key

Primary key

League table login

“am384”

“bd”

name

“tictactoeNovice”

“tictactoeExpert”

“js289”“chessNovice”

Foreign key referencing User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Buried Association

League LeagueOwner * 1

id:long
LeagueOwner table

... owner:long
League table

...id:long

•  Associations with multiplicity “one” can be implemented
using a foreign key

For one-to-many associations we add the foreign key to the
table representing the class on the “many” end

For all other associations we can select either class at the end
of the association.

owner

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Another Example for Buried Association

Transaction

transactionID

Portfolio

portfolioID
...

*

portfolioID ...
Portfolio TableTransaction Table

transactionID portfolioID

Foreign Key

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Mapping Many-To-Many Associations

City

cityName

Airport
airportCode
airportName

* * Serves

cityName
Houston
Albany
Munich

Hamburg

City Table

airportCode
IAH
HOU
ALB
MUC
HAM

Airport Table

airportName
Intercontinental

Hobby
Albany County
Munich Airport

Hamburg Airport

cityName
Houston
Houston
Albany
Munich

Hamburg

Serves Table

airportCode
IAH
HOU
ALB
MUC
HAM

In this case we need a separate table for the association

Separate table for
the association “Serves”

Primary KeyPrimary Key

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Another Many-to-Many Association
Mapping

Player Tournament * *

id

Tournament table

23

name ...

novice

24 expert
tournament player

TournamentPlayerAssociation
table

23 56

23 79

Player table

id

56

name ...

alice

79 john

We need the Tournament/Player association as a separate table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Realizing Inheritance

•  Relational databases do not support inheritance
•  Two possibilities to map an inheritance

association to a database schema
•  With a separate table (”vertical mapping”)

•  The attributes of the superclass and the subclasses
are mapped to different tables

•  By duplicating columns (”horizontal mapping”)
•  There is no table for the superclass
•  Each subclass is mapped to a table containing the

attributes of the subclass and the attributes of the
superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Realizing inheritance with a separate table
 (Vertical mapping)

User table
id

56

name ...

zoe

79 john

role

LeagueOwner

Player

Player

User

LeagueOwner

maxNumLeagues credits

name

Player table
id

79

credits ...

126

id

LeagueOwner table

56

maxNumLeagues ...

12

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Realizing inheritance by duplicating
columns (Horizontal Mapping)

Player

User

LeagueOwner

maxNumLeagues credits

name

id
LeagueOwner table

56

maxNumLeagues ...

12

name

zoe

Player table
id

79

credits ...

126

name

john

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Comparison: Separate Tables vs
Duplicated Columns

•  The trade-off is between modifiability and
response time

•  How likely is a change of the superclass?
•  What are the performance requirements for queries?

•  Separate table mapping (Vertical mapping)
J We can add attributes to the superclass easily by

adding a column to the superclass table
L Searching for the attributes of an object requires a join

operation.
•  Duplicated columns (Horizontal Mapping)

L Modifying the database schema is more complex and
error-prone

J Individual objects are not fragmented across a number
of tables, resulting in faster queries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Summary

•  Four mapping concepts:
•  Model transformation improves the compliance of the

object design model with a design goal
•  Forward engineering improves the consistency of the

code with respect to the object design model
•  Refactoring improves code readability/modifiability
•  Reverse engineering discovers the design from the code.

•  Model transformations and forward engineering
techniques:

•  Optimizing the class model
•  Mapping associations to collections
•  Mapping contracts to exceptions
•  Mapping class model to storage schemas.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Backup and Example Slides

