
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 11, Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Terminology

•  Failure: Any deviation of the observed behavior
from the specified behavior

•  Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

•  Fault: The mechanical or algorithmic cause of an
error (“bug”)

•  Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Examples of Faults and Errors

•  Faults in the Interface
specification

•  Mismatch between
what the client needs
and what the server
offers

•  Mismatch between
requirements and
implementation

•  Algorithmic Faults
•  Missing initialization
•  Incorrect branching

condition
•  Missing test for null

•  Mechanical Faults
(very hard to find)

•  Operating temperature
outside of equipment
specification

•  Errors
•  Null reference errors
•  Concurrency errors
•  Exceptions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Another View on How to Deal with Faults

•  Fault avoidance
•  Use methodology to reduce complexity
•  Use configuration management to prevent inconsistency
•  Apply verification to prevent algorithmic faults
•  Use Reviews

•  Fault detection
•  Testing: Activity to provoke failures in a planned way
•  Debugging: Find and remove the cause (Faults) of an

observed failure
•  Monitoring: Deliver information about state => Used

during debugging
•  Fault tolerance

•  Exception handling
•  Modular redundancy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Taxonomy for Fault Handling Techniques

Fault Handling

Fault �
Avoidance

Fault �
Detection

Fault �
Tolerance

Verification

Configuration �
ManagementMethodoloy Atomic�

Transactions
Modular�

Redundancy

System �
Testing

Integration �
Testing

Unit
Testing

Testing Debugging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Observations

•  It is impossible to completely test any nontrivial
module or system

•  Practical limitations: Complete testing is prohibitive in
time and cost

•  Theoretical limitations: e.g. Halting problem

•  “Testing can only show the presence of bugs,
not their absence” (Dijkstra).

•  Testing is not for free

=> Define your goals and priorities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Testing takes creativity

•  To develop an effective test, one must have:
•  Detailed understanding of the system
•  Application and solution domain knowledge
•  Knowledge of the testing techniques
•  Skill to apply these techniques

•  Testing is done best by independent testers
•  We often develop a certain mental attitude that the

program should behave in a certain way when in fact it
does not

•  Programmers often stick to the data set that makes
the program work

•  A program often does not work when tried by
somebody else.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Testing Activities

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Requirements �
Analysis

Document

Client
Expectation

System�
Design

Document

Object�
Design

Document

Developer Client

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Types of Testing

•  Unit Testing
•  Individual component (class or subsystem)
•  Carried out by developers
•  Goal: Confirm that the component or subsystem is

correctly coded and carries out the intended
functionality

•  Integration Testing
•  Groups of subsystems (collection of subsystems) and

eventually the entire system
•  Carried out by developers
•  Goal: Test the interfaces among the subsystems.

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Types of Testing continued...

•  System Testing
•  The entire system
•  Carried out by developers
•  Goal: Determine if the system meets the requirements

(functional and nonfunctional)
•  Acceptance Testing

•  Evaluates the system delivered by developers
•  Carried out by the client. May involve executing typical

transactions on site on a trial basis
•  Goal: Demonstrate that the system meets the

requirements and is ready to use.

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

When should you write a test?

•  Traditionally after the source code is written

•  In XP before the source code written
•  Test-Driven Development Cycle

•  Add a test
•  Run the automated tests

 => see the new one fail
•  Write some code
•  Run the automated tests

 => see them succeed
•  Refactor code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Unit Testing

•  Static Testing (at compile time)
•  Static Analysis
•  Review

•  Walk-through (informal)
•  Code inspection (formal)

•  Dynamic Testing (at run time)
•  Black-box testing
•  White-box testing.

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Black-box testing

•  Focus: I/O behavior
•  If for any given input, we can predict the output, then

the component passes the test
•  Requires test oracle

•  Goal: Reduce number of test cases by
equivalence partitioning:

•  Divide input conditions into equivalence classes
•  Choose test cases for each equivalence class.

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Black-box testing: Test case selection

a) Input is valid across range of values

•  Developer selects test cases from 3 equivalence classes:
•  Below the range
•  Within the range
•  Above the range

b) Input is only valid, if it is a member of a
discrete set

•  Developer selects test cases from 2 equivalence classes:
•  Valid discrete values
•  Invalid discrete values

•  No rules, only guidelines.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Black box testing: An example

public class MyCalendar {

 public int getNumDaysInMonth(int month, int year)
 throws InvalidMonthException
 { … }

}

 Representation for month:
1: January, 2: February, …., 12: December

Representation for year:
1904, … 1999, 2000,…, 2006, …

How many test cases do we need for the black box testing of
getNumDaysInMonth()?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

White-box testing overview

•  Code coverage

•  Branch coverage

•  Condition coverage

•  Path coverage

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Unit Testing Heuristics

1. Create unit tests when
object design is completed

•  Black-box test: Test the
functional model

•  White-box test: Test the
dynamic model

2. Develop the test cases
•  Goal: Find effective num-

ber of test cases
3. Cross-check the test cases

to eliminate duplicates
•  Don't waste your time!

4. Desk check your source code
•  Sometimes reduces testing

time
5. Create a test harness

•  Test drivers and test stubs
are needed for integration
testing

6. Describe the test oracle
•  Often the result of the first

successfully executed test
7. Execute the test cases

•  Re-execute test whenever
a change is made
(“regression testing”)

8. Compare the results of the
test with the test oracle

•  Automate this if possible.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

JUnit: Overview
•  A Java framework for writing and running unit tests

•  Test cases and fixtures
•  Test suites
•  Test runner

•  Written by Kent Beck and Erich Gamma
•  Written with “test first” and pattern-based development in

mind
•  Tests written before code
•  Allows for regression testing
•  Facilitates refactoring

•  JUnit is Open Source
•  www.junit.org
•  JUnit Version 4, released Mar 2006

Unit�
Testing

Acceptance�
Testing

Integration �
Testing

System�
Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

*

JUnit Classes

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

UnitToBeTested

Methods under Test

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

An example: Testing MyList

•  Unit to be tested
•  MyList

•  Methods under test
•  add()
•  remove()
•  contains()
•  size()

•  Concrete Test case
•  MyListTestCase

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Writing TestCases in JUnit
public class MyListTestCase extends TestCase {

public MyListTestCase(String name) {
 super(name);

}
public void testAdd() {
 // Set up the test
 List aList = new MyList();
 String anElement = “a string”;

 // Perform the test
 aList.add(anElement);

 // Check if test succeeded
 assertTrue(aList.size() == 1);
 assertTrue(aList.contains(anElement));

}
protected void runTest() {
 testAdd();

}
}

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Writing Fixtures and Test Cases
public class MyListTestCase extends TestCase {
// …
private MyList aList;
private String anElement;
public void setUp() {
 aList = new MyList();
 anElement = “a string”;

}

public void testAdd() {
 aList.add(anElement);
 assertTrue(aList.size() == 1);
 assertTrue(aList.contains(anElement));

}

public void testRemove() {
 aList.add(anElement);
 aList.remove(anElement);
 assertTrue(aList.size() == 0);
 assertFalse(aList.contains(anElement));

}

Test Fixture

Test Case

Test Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Collecting TestCases into TestSuites

public static Test suite() {
 TestSuite suite = new TestSuite();
 suite.addTest(new MyListTest(“testAdd”));
 suite.addTest(new MyListTest(“testRemove”));
 return suite;

}

Test

run(TestResult)

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Composite Pattern!

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Design patterns in JUnit

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Command Pattern

Composite
Pattern

Adapter
Pattern

Template Method
Pattern

TestedUnit

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Design patterns in JUnit

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Command Pattern

Composite
Pattern

Adapter
Pattern

Template Method
Pattern

TestedUnit

*

