
U
si

ng
 U

M
L,

 P
at

te
rn

s, 
an

d 
Ja

va
O

bj
ec

t-O
ri

en
te

d 
So

ftw
ar

e 
En

gi
ne

er
in

g

Chapter 11, Testing,  
Part 2: Integration and 

System Testing 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        2

Overview 

•  Integration testing 
•  Big bang 
•  Bottom up 
•  Top down 
•  Sandwich 
•  Continuous 

•  System testing 
•  Functional 
•  Performance 

•  Acceptance testing 
•  Summary 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        3

Integration Testing 

•  The entire system is viewed as a collection of 
subsystems (sets of classes) determined during 
the system and object design  

•  Goal: Test all interfaces between subsystems 
and the interaction of subsystems 

•  The Integration testing strategy determines the 
order in which the subsystems are selected for 
testing and integration. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        4

Why do we do integration testing? 

•  Unit tests only test the unit in isolation 

•  Many failures result from faults in the interaction of 
subsystems 

•  Often many Off-the-shelf components are used that 
cannot be unit tested 

•  Without integration testing the system test will be very 
time consuming 

•  Failures that are not discovered in integration testing will 
be discovered after the system is deployed and can be 
very expensive. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        5

Stubs and drivers 

•  Driver: 
•  A component, that calls the TestedUnit 
•  Controls the test cases 

 
•  Stub: 

•  A component, the TestedUnit  
depends on 

•  Partial implementation 
•  Returns fake values. 

Driver

Tested
Unit

Stub



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        6

Example:  A 3-Layer-Design 

Layer I

Layer II

Layer III

Spread �
SheetView

A

Calculator

C

BinaryFile�
Storage

E

XMLFile�
Storage

F
Currency�
DataBase

G

Currency
Converter

D
Data�

Model

B

A

C

E F G

DB

Spread �
SheetView

BinaryFile�
Storage

Entity
Model

A

E F
Currency�
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile�
Storage

(Spreadsheet) 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        7

A

C

E F G

DB

Big-Bang Approach 

Test A

Test B

Test G

Test F

Test E

Test C

Test D
Test 

A, B, C, D,
E, F, G



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        8

Bottom-up  Testing Strategy 

•  The subsystems in the lowest layer of the call 
hierarchy are tested individually 

•  Then the next subsystems are tested that call the 
previously tested subsystems 

•  This is repeated until all subsystems are included 
•  Drivers are needed. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        9

A

C

E F G

DB

Bottom-up Integration A

Test 
A, B, C, D,

E, F, G

E
Test E

F

Test F

B

Test B, E, F

C

Test C

D

Test D,G

G

Test G



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        10

Pros and Cons of Bottom-Up Integration 
Testing 

•  Con: 
•  Tests the most important subsystem (user interface) 

last 
•  Drivers needed 

•  Pro 
•  No stubs needed 
•  Useful for integration testing of the following systems 

•  Object-oriented systems 
•  Real-time systems 
•  Systems with strict performance requirements. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        11

Top-down Testing Strategy 

•  Test the top layer  or the controlling subsystem 
first 

•  Then combine all the subsystems that are called 
by the tested subsystems and test the resulting 
collection of subsystems 

•  Do this until all subsystems are incorporated 
into the test 

•  Stubs are needed to do the testing. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        12

Top-down Integration 

Test 
A, B, C, D,

E, F, G

All LayersLayer I + II

Test A, B, C, D

Layer I

Test A

A

E F

B C D

G



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        13

Pros and Cons of Top-down Integration 
Testing 

Pro 
•  Test cases can be defined in terms of the 

functionality of the system (functional 
requirements) 

•  No drivers needed 

Cons 
•  Writing stubs is difficult: Stubs must allow all 

possible conditions to be tested. 
•  Large number of stubs may be required, 

especially if the lowest level of the system 
contains many methods. 

•  Some interfaces are not tested separately. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        14

Sandwich Testing Strategy 

•  Combines top-down strategy with bottom-up 
strategy 

•  The system is viewed as having three layers 
•  A target layer in the middle 
•  A layer above the target 
•  A layer below the target 

•  Testing converges at the target layer. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        15

Sandwich Testing Strategy 

Test 
A, B, C, D,

E, F, G
Test B, E, F

Test D,G

Test A

Test E

Test F

Test G

Test A,B,C, D

A

E F

B C D

G



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        16

Pros and Cons of Sandwich Testing 

•  Top and Bottom Layer Tests can be done in 
parallel 

•  Problem: Does not test the individual 
subsystems  and their interfaces thoroughly 
before integration 

•  Solution: Modified sandwich testing strategy 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        17

Modified Sandwich Testing Strategy 

•  Test in parallel: 
•  Middle layer with drivers and stubs 
•  Top layer with stubs 
•  Bottom layer with drivers 

•  Test in parallel: 
•  Top layer accessing middle layer (top layer 

replaces drivers) 
•  Bottom accessed by  middle layer (bottom 

layer replaces stubs). 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        18

Modified Sandwich Testing 

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Test D,G

Test A,C

Test 
A, B, C, D,

E, F, G

A

E F

B C D

G



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        19

Continuous Testing 

•  Continuous build: 
•  Build from day one 
•  Test from day one 
•  Integrate from day one 
⇒  System is always runnable 

 
•  Requires integrated tool support: 

•  Continuous build server 
•  Automated tests with high coverage 
•  Tool supported refactoring 
•  Software configuration management 
•  Issue tracking. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        20

Spread �
SheetView

BinaryFile�
Storage

Data�
Model

Continuous Testing Strategy 

Layer I

Layer II

Layer III

A

E F
Currency�
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile�
Storage

Sheet View + Cells
+ Addition + File Storage



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        21

Steps in Integration Testing 

 

.

1. Based on the integration 
strategy, select a 
component to be tested. 
Unit test all the classes in 
the component. 

2. Put selected component 
together; do any 
preliminary fix-up 
necessary to make the 
integration test operational 
(drivers, stubs) 

3. Test functional 
requirements: Define test 
cases that exercise all uses 
cases with the selected 
component 

4. Test subsystem 
decomposition: Define test 
cases that exercise all 
dependencies  

5. Test non-functional 
requirements: Execute 
performance tests 

6. Keep records of the test 
cases and testing activities. 

7. Repeat steps 1  to 7 until 
the full system is tested. 

 
The primary goal of integration 

testing is to identify failures 
with the (current) 
component configuration. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        22

System Testing 

•  Functional Testing 
•  Validates functional requirements 

•  Performance Testing 
•  Validates non-functional requirements 

•  Acceptance Testing 
•  Validates clients expectations 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        23

. 

Functional Testing 

Goal: Test functionality of system 
•  Test cases are designed from the requirements 

analysis document  (better: user manual) and 
centered around requirements and key functions 
(use cases) 

•  The system is treated as black box 
•  Unit test cases can be reused, but new test 

cases have to be developed as well. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        24

Performance Testing 

Goal: Try to violate non-functional requirements 
•  Test how the system behaves when overloaded.  

•  Can bottlenecks be identified?  (First candidates for  
redesign in the next iteration) 

•  Try unusual orders of execution  
•  Call a receive()  before send() 

•  Check the system’s response to large volumes 
of data 

•  If the system is supposed to handle 1000 items, try it 
with 1001 items. 

•  What is the amount of time spent in different 
use cases? 

•  Are typical cases executed  in a timely fashion? 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        25

Types of Performance Testing 

•  Stress Testing 
•  Stress limits of system 

•  Volume testing 
•  Test what happens if large 

amounts of data are handled 
•  Configuration testing 

•  Test the various software and 
hardware configurations  

•  Compatibility test 
•  Test backward compatibility 

with existing systems 
•  Timing testing 

•  Evaluate response times and 
time to perform a function 

•  Security testing 
•  Try to violate security 

requirements 
•  Environmental test 

•  Test tolerances for heat, 
humidity, motion 

•  Quality testing 
•  Test reliability, maintain- 

ability & availability  
•  Recovery testing 

•  Test system’s response to 
presence of errors or loss 
of data 

•  Human factors testing 
•  Test with end users. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        26

Acceptance Testing 

•  Goal: Demonstrate system is 
ready for operational use 

•  Choice of tests is made by 
client 

•  Many tests can be taken 
from integration testing 

•  Acceptance test is 
performed by the client, not 
by the developer. 

•  Alpha test: 
•  Client uses the software 

at the developer’s 
environment. 

•  Software used in a 
controlled setting, with 
the developer always 
ready to fix bugs. 

•  Beta test: 
•  Conducted at client’s 

environment (developer is 
not present) 

•  Software gets a realistic 
workout in target environ- 
ment 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        27

Testing has many activities 

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        28

Test Team 

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration 
Management

Specialist

System 
Designer



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        29

The 4 Testing Steps 

1. Select what has to be tested 
•  Analysis: Completeness of 

requirements 
•  Design: Cohesion 
•  Implementation: Source 

code 
2. Decide how the testing is 

done 
•  Review or code inspection 
•  Proofs (Design by Contract) 
•  Black-box, white box,  
•  Select integration testing 

strategy (big bang, bottom 
up, top down, sandwich) 

3. Develop test cases 
•  A test case is a set of test 

data or situations that will 
be used to exercise the unit 
(class, subsystem, system) 
being tested or about the 
attribute being measured 

4. Create the test oracle 
•  An oracle contains the 

predicted results for a set of 
test cases  

•  The test oracle has to be 
written down before the 
actual testing takes place. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        30

Guidance for Test Case Selection 
•  Use analysis  knowledge 

about functional 
requirements (black-box 
testing): 

•  Use cases 
•  Expected input data 
•  Invalid input data 

•  Use design  knowledge 
about system structure, 
algorithms, data structures  
(white-box testing): 

•  Control structures 
•  Test branches, 

loops, ... 
•  Data structures 

•  Test records fields, 
arrays, ... 

•  Use implementation  
knowledge about 
algorithms and 
datastructures: 

•  Force a division by zero 
•  If the upper bound of an 

array is 10, then use 11 as 
index. 



Bernd Bruegge & Allen H. Dutoit           Object-Oriented Software Engineering: Using UML, Patterns, and Java                                        31

Summary 

•  Testing is still a black art, but many rules and 
heuristics are available 

•  Testing consists of 
•  Unit testing 
•  Integration testing 
•  System testing 
•  Acceptance testing 

•  Design patterns can be used for integration 
testing 

•  Testing has its own lifecycle 


