
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g

Chapter 15,
Software Life Cycle

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Lecture Road Map

•  Software Development as Application Domain
•  Modeling the software lifecycle

•  IEEE Standard 1074 for Software Lifecycles
•  Modeling the software life cycle

•  Sequential models
•  Pure waterfall model
•  V-model

•  Iterative models
•  Boehm’s spiral model
•  Unified Process (in the next lecture)

•  Entity-oriented models
•  Issue-based model

•  Capability Maturity Model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Inherent Problems with Software
Development

•  Requirements are constantly changing
•  The client might not know all the requirements in

advance

•  Frequent changes are difficult to manage
•  Identifying checkpoints for planning and cost estimation

is difficult

•  There is more than one software system
•  New system must often be backward compatible with

existing system (“legacy system”)

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Software Life Cycle

•  The term “Lifecycle” is based on the metaphor of
the life of a person:

Post-
Development

Conception

DevelopmentPre-
Development

Childhood Adulthood RetirementChildhood

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Typical Software Life Cycle Questions

•  Which activities should we select for the software project?
•  What are the dependencies between activities?
•  How should we schedule the activities?
•  To find these activities and dependencies we can use the

same modeling techniques we use for software development:
•  Functional Modeling of a Software Lifecycle

•  Scenarios
•  Use case model

•  Structural modeling of a Software Lifecycle
•  Object identification
•  Class diagrams

•  Dynamic Modeling of a Software Lifecycle
•  Sequence diagrams, statechart and activity diagrams

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Identifying Software Development
Activities

•  Questions to ask:
•  What is the problem?
•  What is the solution?
•  What are the best mechanisms to

implement the solution?
•  How is the solution constructed?
•  Is the problem solved?
•  Can the customer use the solution?
•  How do we deal with changes that occur

during the development? Are enhancements
needed?

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Requirements Analysis

System Design

What is the problem?

What is the solution?

Detailed Design
What are the best mechanisms

Program Implementation How is the solution
constructed?

Testing Is the problem solved?

Delivery Can the customer use the solution?

Maintenance Are enhancements needed?

to implement the solution?

Application
Domain

Solution
Domain

Software Development Activities (Example 1)

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Software Development Activities (Example 2)

 Requirements Analysis

System Design

What is the problem?

What is the solution?

 Object Design What are the best mechanisms
to implement the solution?

 Implementation How is the solution
 constructed?

Application
Domain

Solution
Domain

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Definitions

•  Software life cycle:
•  Set of activities and their relationships to each other

to support the development of a software system

•  Software development methodology:
•  A collection of techniques for building models applied

across the software life cycle

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Developer Client Project manager

System development Problem definition

<<include>>
<<include>>

<<include>>
Software development

System operation

End user Administrator

Functional Model of a simple life cycle
model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

System
operation
activity

System
development
activity

Problem
definition
activity

Software development goes through a linear progression of states
called software development activities

Activity Diagram for the same Life Cycle
Model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Another simple Life Cycle Model

System Development and Market creation can be done in parallel.
They must be done before the system upgrade activity

System
upgrade
activity

Market
creation
activity

System
development
activity

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Two Major Views of the Software Life Cycle

•  Activity-oriented view of a software life cycle
•  Software development consists of a set of development

activities
•  all the examples so far

•  Entity-oriented view of a software life cycle
•  Software development consists of the creation of a set of

deliverables.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Entity-centered view of Software Development

Lessons learned
document

System specification
document Executable system

Market survey
document

Software Development

Software development consists of the creation of a
set of deliverables

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Specification

Executable system

Lessons learned

Market survey

Problem definition

System development

System operation

Activity Work product

consumes

produces

consumes

produces

consumes

produces

activity

activity

activity

document

document

document

Combining Activities and Entities in One
View

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

IEEE Std 1074: Standard for Software Life
Cycle Activities

IEEE Std 1074

Project
Management

Pre-
Development

Develop-
ment

Post-
Development

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Process

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Processes, Activities and Tasks
•  Process Group: Consists of a set of processes
•  Process: Consists of activities
•  Activity: Consists of sub activities and tasks

Process
Group

Process

Activity

Development

Design

Task

Design
Database

Make a
Purchase

Recommendation

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Object Model of the IEEE 1074 Standard

Process Group

Activity Work Product

Resource

Task

Process

Money

Time

Participant

consumed by

produces

Work Unit

*

*

*

*

Software Life Cycle

*

*

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Process Maturity

•  A software development process is mature
•  if the development activities are well defined and
•  if management has some control over the quality, budget

and schedule of the project

•  Process maturity is described with
•  a set of maturity levels and
•  the associated measurements (metrics) to manage the

process
•  Assumption:

•  With increasing maturity the risk of project failure
decreases

•  CMM: Capability Maturity Model (SEI,Humphrey)

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

CMM levels

1. Initial Level
also called ad hoc or chaotic

2. Repeatable Level
 Process depends on individuals ("champions")

3. Defined Level
 Process is institutionalized (sanctioned by management)

4. Managed Level
Activities are measured and provide feedback for resource

allocation (process itself does not change)

5. Optimizing Level
Process allows feedback of information to change process

itself

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

What does Process Maturity Measure?

•  The real indicator of process maturity is the
level of predictability of project performance
(quality, cost, schedule).

•  Level 1: Random, unpredictable performance
•  Level 2: Repeatable performance from project

to project
•  Level 3: Better performance on each

successive project
•  Level 4: Substantial improvement (order of

magnitude) in one dimension of project
performance

•  Level 5: Substantial improvements across all
dimensions of project performance.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Key Process Areas

•  To achieve a specific level of maturity, the
organization must demonstrate that it
addresses all the key process areas defined for
that level.

•  There are no key process areas for Level 1
•  KPA Level 2: Basic software project

management practice
•  KPA Level 3: Infrastructure for single software

life cycle model
•  KPA Level 4: Quantitative understanding of

process and deliverables
•  KPA Level 5: Keep track of technology and

process changes

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Pros and Cons of Process Maturity

•  Benefits:
•  Increased control of projects
•  Predictability of project cost and schedule
•  Objective evaluations of changes in techniques, tools

and methodologies
•  Predictability of the effect of a change on project cost

or schedule

•  Problems:
•  Need to watch a lot (“Big brother“, „big sister“)
•  Overhead to capture, store and analyse the required

information

•  Agile Methodologies
•  Deemphasize the importance of process maturity

=> Lecture on Methodologies

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Lecture Road Map

•  Software Development as Application Domain
•  Modeling the software lifecycle

•  IEEE Standard 1074 for Software Lifecycles
•  Modeling the software life cycle

•  Sequential models
•  Pure waterfall model
•  V-model

•  Iterative models
•  Boehm’s spiral model (Unified Process in the next

lecture)
•  Entity-oriented models

•  Issue-based model

•  Capability Maturity Model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Requirements
Process

System
Allocation
Process

Concept
Exploration
Process

Design
Process

Implementation
Process

Installation
Process

Operation &
Support Process

Verification
& Validation

Process

The Waterfall Model of
the Software Life
Cycle

adapted from [Royce 1970]

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Example of a waterfall model : DOD
Standard 2167A

•  Software development activities:
•  System Requirements Analysis/Design
•  Software Requirements Analysis
•  Preliminary Design and Detailed Design
•  Coding and CSU testing
•  CSC Integration and Testing
•  CSCI Testing
•  System integration and Testing

•  Required by the U.S. Department of Defense for
all software contractors in the 1980-90’s.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Activity Diagram of
MIL DOD-STD-2167A

Preliminary
Design Review

Critical Design
Review (CDR)

System
Requirements

Review

System
Design
Review

Software
Specification

Review

System
Requirements
Analysis

Software
Requirements
Analysis

System
Design

…

Preliminary
Design

Detailed
Design

Coding &
CSU Testing

CSC
Integration
& Testing

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

From the Waterfall Model to the V Model

System Design

Requirements
Analysis

Requirements
Engineering

Object
Design

Integration
Testing

System
Testing

Unit
 Testing

Implemen-
tation

System
Testing

Unit
 Testing

Integration
 Testing

Acceptance

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Activity Diagram of the V Model
System

Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Software
Requirements
Elicitation

Operation

Client
Acceptance

Requirements
Analysis

Unit
Test

System
Integration

& Test

Component
Integration

& Test

Problem with the V-Model:
Developers Perception =

 User Perception

precedes
Is validated by

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Properties of Waterfall-based Models

•  Managers love waterfall models
•  Nice milestones
•  No need to look back (linear system)
•  Always one activity at a time
•  Easy to check progress during development: 90%

coded, 20% tested
•  However, software development is non-linear

•  While a design is being developed, problems with
requirements are identified

•  While a program is being coded, design and
requirement problems are found

•  While a program is tested, coding errors, design errors
and requirement errors are found.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Escher was the first:-)

 The Alternative: Allow Iteration

http://en.wikipedia.org/wiki/File:Escher_Waterfall.jpg

Note: The image is copyrighted

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Construction of Escher’s Waterfall Model

http://www.cs.technion.ac.il/~gershon/EscherForReal/
EscherWaterfall2Penrose.gif

Note: The image is copyrighted

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

•  The spiral model proposed by Boehm has the
following set of activities

•  Determine objectives and constraints
•  Evaluate alternatives
•  Identify risks
•  Resolve risks by assigning priorities to risks
•  Develop a series of prototypes for the identified risks

starting with the highest risk
•  Use a waterfall model for each prototype development
•  If a risk has successfully been resolved, evaluate the results

of the round and plan the next round
•  If a certain risk cannot be resolved, terminate the project

immediately
•  This set of activities is applied to a couple of so-

called rounds.

Spiral Model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Rounds in Boehm’s Spiral Model

•  Concept of Operations
•  Software

Requirements
•  Software Product

Design
•  Detailed Design
•  Code
•  Unit Test
•  Integration and Test
•  Acceptance Test
•  Implementation

•  For each round go
through these activities:

•  Define objectives,
alternatives,
constraints

•  Evaluate alternatives,
identify and resolve
risks

•  Develop and verify a
prototype

•  Plan the next round.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Diagram of Boehm’s Spiral Model

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Round 1, Concept of Operations, Quadrant IV:
Determine Objectives,Alternatives & Constraints

Project
Start

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Round 1, Concept of Operations, Quadrant I:
Evaluate Alternatives, identify & resolve Risks

Risk Analysis

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Round 1, Concept of Operations, Quadrant II:
Develop and Verify

Concept of Operation
Activity

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Round 1, Concept of Operations, Quadrant III:
Prepare for Next Activity

Requirements and
Life cycle Planning

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Round 2, Software Requirements, Quadrant IV:
Determine Objectives,Alternatives & Constraints

Start
of Round 2

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Comparison of Projects
Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Project P1

Project P2

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Limitations of Waterfall and Spiral Models

•  Neither of these models deal well with frequent
change

•  The Waterfall model assumes that once you are done
with a phase, all issues covered in that phase are
closed and cannot be reopened

•  The Spiral model can deal with change between
phases, but does not allow change within a phase

•  What do you do if change is happening more
frequently?

•  “The only constant is the change”

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

An Alternative: Issue-Based Development

•  A system is described as a collection of issues
•  Issues are either closed or open
•  Closed issues have a resolution
•  Closed issues can be reopened (Iteration!)

•  The set of closed issues is the basis of the system
model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis Analysis

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis

Design

Analysis

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Waterfall Model: Implementation Phase

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

D.I1:Open

Imp.I1:Open

Analysis:80%

 Design: 10%

Implemen-
tation: 10%

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

SD.I1:Open

SD.I2:Open

Imp.I1:Open

Imp.I2:Open

Imp.I3:Open Analysis:40%

 Design: 60%

Implemen-
tation: 0%

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Issue-Based Model: Implementation Phase

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Closed

SD.I3:Open Analysis:10%

 Design: 10%

Implemen-
tation: 60%

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Issue-Based Model: Prototype is Done

I1:Closed

I2:Closed I3: Pending

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2: Unresolved

SD.I3:Closed

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Frequency of Change and Choice of
Software Lifecycle Model

PT = Project Time, MTBC = Mean Time Between Change
•  Change rarely occurs (MTBC » PT)

•  Linear Model (Waterfall, V-Model)
•  Open issues are closed before moving to next phase

•  Change occurs sometimes (MTBC ≈ PT)
•  Iterative model (Spiral Model, Unified Process)
•  Change occurring during phase may lead to iteration

of a previous phase or cancellation of the project
•  Change is frequent (MTBC « PT)

•  Issue-based Model (Concurrent Development, Scrum)
•  Phases are never finished, they all run in parallel.

 Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

•  Software life cycle models
•  Sequential models

•  Pure waterfall model and V-model
•  Sawtooth model

•  Iterative model
•  Boehm’s spiral model

• Rounds
• Comparison of projects

•  Prototyping
•  Revolutionary and evolutionary prototyping
•  Time-boxed prototyping instead of rapid prototyping

•  Entity-oriented models
•  Issue-based model
•  Sequential models can be modeled as special cases of

the issue-based model.

Summary

