
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-O
ri

en
te

d
So

ftw
ar

e
En

gi
ne

er
in

g Chapter 16, Methodologies
Examples: XP and Scrum

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of the Lecture

•  Examples of Methodologies
•  Extreme Programming
•  Scrum

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

XP (Extreme Programming)

•  XP is an agile software methodology
•  Higher priority on adaptability (“empirical process control

model”) than on predictability (“defined process control
model”)

•  Change in the requirements is normal during software
development

•  Software developer must be able react to changing
requirements at any point during the project

•  XP prescribes a set of day-to-day practices for managers and
developers to address this problem.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

History of XP

•  Original cast
•  Kent Beck, Ron Jeffries, Ward Cunningham (also

created Wiki)

•  Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

•  Lots of initial excitement but later a lot of
problems:

•  Daimler actually shut down the C3 Project in 2000 and
even banned XP for some time

•  (See Additional References).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

XP Day-to-Day Practices

1.  Rapid feedback
•  Confronting issues early results in more time for

resolving issues. This applies both to client feedback
and feedback from testing

2.  Simplicity
•  The design should focus on the current requirements
•  Simple designs are easier to understand and change

than complex ones
3.  Incremental change

•  One change at the time instead of many concurrent
changes

•  One change at the time should be integrated with the
current baseline.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

XP Mantras (continued)

4. Embracing change
•  Change is inevitable and frequent in XP projects
•  Change is normal and not an exception that needs to

be avoided

5. Quality work
•  Focus on rapid projects where progress is

demonstrated frequently
•  Each change should be implemented carefully and

completely.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How much planning in XP?

• Planning is driven by requirements and their
relative priorities

•  Requirements are elicited by writing stories with the
client (called user stories)

• User stories are high-level scenarios or use cases
that encompass a set of coherent features

•  Developers decompose each user story in terms of
development tasks that are needed to realize the
features required by the story

•  Developers estimate the duration of each task in terms
of days

•  If a task is planned for more than a couple of weeks, it
is further decomposed into smaller tasks.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

How much planning in XP?

•  Ideal weeks
•  Number of weeks estimated by a developer to

implement the story if all work time was dedicated for
this single purpose

•  Fudge Factor
•  Factor to reflect overhead activities (meetings,

holidays, sick days...)
•  Also takes into account uncertainties associated with

planning
•  Project velocity

•  Inverse of ideal weeks
•  i.e., how many ideal weeks can be accomplished in

fixed time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

How much planning in XP?

•  Stacks
•  The user stories are organized into stacks of related

functionality

•  Prioritization of stacks
•  The client prioritizes the stacks so that essential

requirements can be addressed early and optional
requirements last

•  Release Plan
•  Specifies which story will be implemented for which

release and when it will be deployed to the end user
•  Schedule

•  Releases are scheduled frequently (e.g., every 1–2
months) to ensure rapid feedback from the end users.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Team Organization in XP

•  Production code is written in pairs (pair
programming)

•  Individual developers may write prototypes for
experiments or proof of concepts, but not
production code

•  Moreover, pairs are rotated often to enable a
better distribution of knowledge throughout the
project.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

How much reuse in XP?

•  Simple design
•  Developers are encouraged to select the most simple

solution that addresses the user story being currently
implemented

•  No design reusability
•  The software architecture can be refined and

discovered one story at the time, as the prototype
evolves towards the complete system

•  Focus on Refactoring
•  Design patterns might be introduced as a result of

refactoring, when changes are actually implemented
•  Reuse discovery only during implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

How much modeling in XP?

•  No explicit analysis/design models
•  Minimize the amount of documentation
•  Fewer deliverables reduce the duplication of issues

•  Models are only communicated among
participants

•  The client is the “walking specification”
•  Source Code is the only external model

•  The system design is made visible in the source code
by using descriptive naming schemes

•  Refactoring is used to improve the source code
•  Coding standards are used to help developers

communicate using only the source code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

How much process in XP?

•  Iterative life cycle model with 5 activities:
planning, design, coding, testing and integration

•  Planning occurs at the beginning of each iteration
•  Design, coding, and testing are done incrementally
•  Source code is continuously integrated into the main

branch, one contribution at the time
•  Unit tests for all integrated units; regression testing

•  Constraints on these activities
•  Test first. Unit tests are written before units. They are

written by the developer
•  When defects are discovered, a unit test is created to

reproduce the defect
•  Refactor before extending the source code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

How much control in XP?

•  Reduced number of formal meetings
•  Daily stand up meeting for status communication
•  No discussions to keep the meeting short

•  No inspections and no peer reviews
•  Pair programming is used instead
•  Production code is written in pairs, review during

coding.

•  Self-organizing system with a leader:
•  The Leader communicates the vision of the system
•  The leader does not plan, schedule or budget
•  The leader establishes an environment based on

collaboration, shared information, and mutual trust
•  The leader ensures that a product is shipped.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Summary of the XP Methodology
Planning Collocate the project with the client,write user stories

with the client, frequent small releases (1-2 months),
create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
identification; Write code that adheres to standards;
Refactor whenever possible

Process Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control Code is owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Scrum

•  What is Scrum?
•  History of Scrum
•  Agile Alliance
•  Agile Project Management
•  Functionality of Scrum
•  Components of Scrum

•  Scrum Roles
•  The Process
•  Scrum Artifacts

•  Scaling Scrum
•  Evolution of Scrum
•  Conclusion

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Introduction

•  Classical software development methodologies
have some disadvantages:

•  Huge effort during the planning phase
•  Poor requirements conversion in a rapid changing

environment
•  Treatment of staff as a factor of production

•  Agile Software Development Methodologies
•  Minimize risk à short iterations
•  Real-time communication (preferable face-to-face) à

very little written documentation
•  www.agilealliance.org

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Scrum
•  Definition (Rugby): A Scrum is a way to restart

the game after an interruption,
•  The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

•  Definition (Software Development): Scrum is an
agile, lightweight process

•  To manage and control software and product
development with rapidly changing requirements

•  Based on improved communication and maximizing
cooperation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

History of Scrum

•  1995:
•  Jeff Sutherland and Ken Schwaber analyse common

software development processes
•  Conclusion: not suitable for empirical, unpredictable

and non-repeatable processes
•  Proposal of Scrum
•  Enhancement of Scrum by Mike Beedle

•  Combination of Scrum with Extreme Programming

•  1996: Introduction of Scrum at OOPSLA
•  2001: Publication “Agile Software Development

with Scrum” by Ken Schwaber & Mike Beedle
•  Founders are also members in the Agile Alliance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Why Scrum ?
Traditional methods are

like relay races
Agile methods are like

rugby

Image sources: http://en.wikipedia.org/wiki/File:Relay_race_baton_pass.jpg
 http://upload.wikimedia.org/wikipedia/commons/b/bf/Rugby_ST.F-ST.T_27022007-19.JPG
For reuse see http://commons.wikimedia.org/wiki/Commons:Reusing_content_outside_Wikimedia

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Practicing a Scrum Real Scrums

Sources: http://www.youtube.com/watch?v=Dt9MuKZGOiA
 http://www.youtube.com/watch?v=qOhoJSmHado

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Testudo:
Battle Formation used by the Romans

http://www.youtube.com/watch?
v=mhWXElA-4aM&feature=PlayList&p=FB93AB56308E6107&index=

0&playnext=1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Manifesto for Agile Software Development

•  http://www.agilemanifesto.org/
•  Individuals and interactions over processes and

tools
•  Working software over comprehensive

documentation
•  Customer collaboration over contract negotiation
•  Responding to change over following a plan.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Methodology Issues

•  Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

•  Key questions for which methodologies provide
guidance:

•  How much involvement of the customer?
•  How much planning?
•  How much reuse?
•  How much modeling before coding?
•  How much process?
•  How much control and monitoring?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Scrum as Methodology

•  Involvement of the customer
•  Onsite customer

•  Planning
•  Checklists and incremental daily plans

•  Reuse
•  Checklists from previous projects

•  Modeling
•  Models may or may not be used

•  Process
•  Iterative, incremental process

•  Control and Monitoring
•  Daily meetings.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Components of Scrum

•  Scrum Roles
•  Scrum Master, Scrum Team, Product Owner

•  Process
•  Sprint Planning Meeting
•  Kickoff Meeting
•  Sprint (~~ Iteration in a Unified Process)
•  Daily Scrum Meeting
•  Sprint Review Meeting

•  Scrum Artifacts
•  Product Backlog, Sprint Backlog
•  Burndown Charts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Overview of Scrum

Source: http://www.mountaingoatsoftware.com/scrum-figures

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Scrum Master

•  Represents management to the project
•  Typically filled by a project manager or team

leader
•  Responsible for enacting scrum values and

practices
•  Main job is to remove impediments.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

The Scrum Team

•  Typically 5-6 people
•  Cross-functional (QA, Programmers, UI

Designers, etc.)
•  Members should be full-time
•  Team is self-organizing
•  Membership can change only between sprints

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Product Owner

•  Knows what needs to be build and in
what sequence this should be done

•  Typically a product manager

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Scrum Process Activities

•  Project-Kickoff Meeting
•  Sprint Planning Meeting
•  Sprint
•  Daily Scrum Meeting
•  Sprint Review Meeting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Project-Kickoff Meeting

•  A collaborative meeting in the beginning of the
project

•  Participants: Product Owner, Scrum Master
•  Takes 8 hours and consists of 2 parts (“before lunch

and after lunch”)

•  Goal: Create the Product Backlog

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Sprint Planning Meeting

•  A collaborative meeting in the beginning of each
Sprint

•  Participants: Product Owner, Scrum Master and Scrum
Team

•  Takes 8 hours and consists of 2 parts (“before
lunch and after lunch”)

•  Goal: Create the Sprint Backlog

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Sprint

•  A month-long iteration, during which is
incremented a product functionality

•  No outside influence can interference with the
Scrum team during the Sprint

•  Each day in a Sprint begins with the Daily Scrum
Meeting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Daily Scrum Meeting

•  Is a short (15 minutes long) meeting, which is
held every day before the Team starts working

•  Participants:
•  Scrum Master (which is the chairman), Scrum Team

•  Every Team member should answer on 3
questions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Questions for each Scrum Team Member

1.  Status:
What did I do since the last Scrum meeting?

2.  Issues:
What is stopping me getting on with the work?

3.  Action items:
What am I doing until the next Scrum meeting?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Summary

•  XP and Scrum are agile software development
methodologies with focus on

•  Empirical process control model
•  Changing requirements are the norm
•  Controlling conflicting interests and needs

•  Very simple processes with clearly defined rules
•  Self-organizing teams, where each team

member carries a lot of responsibility
•  No extensive documentation

•  Possibility for “undisciplined hacking”.

