eAR[pue ‘surded ‘TIN[) suis))
SULIUISUY 3IBM)JOS PNUWIILIN-1NRIqO

Outline of the Lecture

« Examples of Methodologies
 Extreme Programming
e Scrum

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

XP (Extreme Programming)

« XP is an agile software methodology

 Higher priority on adaptability (“empirical process control
model”) than on predictability (“defined process control
model”)

e Change in the requirements is normal during software
development

o Software developer must be able react to changing
requirements at any point during the project

o XP prescribes a set of day-to-day practices for managers and
developers to address this problem.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

History of XP

e Original cast

 Kent Beck, Ron Jeffries, Ward Cunningham (also
created Wiki)

o Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

e Lots of initial excitement but later a lot of
problems:

« Daimler actually shut down the C3 Project in 2000 and
even banned XP for some time

e (See Additional References).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

XP Day-to-Day Practices

1. Rapid feedback

 Confronting issues early results in more time for
resolving issues. This applies both to client feedback
and feedback from testing

2. Simplicity
« The design should focus on the current requirements
e Simple designs are easier to understand and change
than complex ones
3. Incremental change

« One change at the time instead of many concurrent
changes

« One change at the time should be integrated with the
current baseline.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

XP Mantras (continued)

4. Embracing change
 Change is inevitable and frequent in XP projects

e Change is normal and not an exception that needs to
be avoided

5. Quality work

e Focus on rapid projects where progress is
demonstrated frequently

e Each change should be implemented carefully and
completely.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

How much planning in XP?

e Planning is driven by requirements and their
relative priorities

 Requirements are elicited by writing stories with the
client (called)

e User stories are high-level scenarios or use cases
that encompass a set of coherent features

» Developers decompose each user story in terms of
development tasks that are needed to realize the
features required by the story

 Developers estimate the duration of each task in terms
of days

« If a task is planned for more than a couple of weeks, it
is further decomposed into smaller tasks.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How much planning in XP?

Number of weeks estimated by a developer to
implement the story if all work time was dedicated for
this single purpose

. Factor to reflect overhead activities (meetings,
holidays, sick days...)

. Also takes into account uncertainties associated with
planning

. Inverse of ideal weeks

.- i.e., how many ideal weeks can be accomplished in
fixed time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

How much planning in XP?

 The user stories are organized into stacks of related
functionality

e The client prioritizes the stacks so that essential
requirements can be addressed early and optional
requirements last

» Specifies which story will be implemented for which
release and when it will be deployed to the end user

» Releases are scheduled frequently (e.g., every 1-2
months) to ensure rapid feedback from the end users.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Team Organization in XP

 Production code is written in pairs

e Individual developers may write prototypes for
experiments or proof of concepts, but not
production code

« Moreover, pairs are rotated often to enable a
better distribution of knowledge throughout the

project.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

How much reuse in XP?

* Developers are encouraged to select the most simple
solution that addresses the user story being currently
implemented

 The software architecture can be refined and
discovered one story at the time, as the prototype
evolves towards the complete system

« Design patterns might be introduced as a result of
refactoring, when changes are actually implemented

e Reuse discovery only during implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

How much modeling in XP?

Minimize the amount of documentation
Fewer deliverables reduce the duplication of issues

The client is the “walking specification”

The system design is made visible in the source code
by using descriptive naming schemes

Refactoring is used to improve the source code

e Coding standards are used to help developers
communicate using only the source code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

12

How much process in XP?

o Iterative life cycle model with 5 activities:
planning, design, coding, testing and integration

Planning occurs at the beginning of each iteration
Design, coding, and testing are done incrementally

Source code is continuously integrated into the main
branch, one contribution at the time

Unit tests for all integrated units; regression testing

Unit tests are written before units. They are
written by the developer

When defects are discovered, a unit test is created to
reproduce the defect

before extending the source code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

How much control in XP?

e Daily stand up meeting for status communication
 No discussions to keep the meeting short

« Pair programming is used instead

* Production code is written in pairs, review during
coding.

« The Leader communicates the vision of the system
 The leader does not plan, schedule or budget

e The leader establishes an environment based on
collaboration, shared information, and mutual trust

« The leader ensures that a product is shipped.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

14

Summary of the XP Methodology

Planning

Collocate the project with the client,write user stories
with the client, frequent small releases (1-2 months),
create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling

Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
1dentification; Write code that adheres to standards;
Refactor whenever possible

Process

Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control

Code 1s owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Scrum

Bernd Bruegge & Allen H. Dutoit

What is Scrum?

History of Scrum

Agile Alliance

Agile Project Management
Functionality of Scrum

Components of Scrum
e Scrum Roles
 The Process
e Scrum Artifacts

Scaling Scrum
Evolution of Scrum
Conclusion

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Infroduction

e Classical software development methodologies
have some disadvantages:
 Huge effort during the planning phase

e Poor requirements conversion in a rapid changing
environment

 Treatment of staff as a factor of production

 Agile Software Development Methodologies

e Minimize risk - short iterations

« Real-time communication (preferable face-to-face) >
very little written documentation

e www.agilealliance.org

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Scrum

e Definition (Rugby): A Scrum is a way to restart
the game after an interruption,

 The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

e Definition (Software Development): Scrum is an
agile, lightweight process

« To manage and control software and product
development with rapidly changing requirements

e Based on improved communication and maximizing
cooperation.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

History of Scrum

e 1995:

« Jeff Sutherland and Ken Schwaber analyse common

software development processes
e Conclusion: not suitable for empirical, unpredictable
and non-repeatable processes

 Proposal of Scrum
« Enhancement of Scrum by Mike Beedle
« Combination of Scrum with Extreme Programming

e 1996: Introduction of Scrum at OOPSLA

« 2001: Publication “Agile Software Development
with Scrum” by Ken Schwaber & Mike Beedle

 Founders are also members in the Agile Alliance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Why Scrum ?

Traditional methods are Agile methods are like
like relay races rugby

Image sources: http://en.wikipedia.org/wiki/File:Relay race baton pass.jpg
http://upload.wikimedia.org/wikipedia/commons/b/bf/Rugby ST.F-ST.T_27022007-19.JPG
For reuse see http://commons.wikimedia.org/wiki/Commons:Reusing content_outside_Wikimedia

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Practicing a Scrum Real Scrums

allblacks.com

Sources: http://www.youtube.com/watch?v=Dt9MuKZGOiA
http://www.youtube.com/watch?v=gOhoJSmHado

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Testudo:
Battle Formation used by the Romans

http://www.youtube.com/watch?
v=mhWXElA-4aM&feature=PlayList&p=FB93AB56308E6107&index=
O&playnext=1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Manifesto for Agile Software Development

e http://www.agilemanifesto.org/

o Individuals and interactions over processes and
tools

 Working software over comprehensive
documentation

e Customer collaboration over contract negotiation
« Responding to change over following a plan.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Methodology Issues

« Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

 Key questions for which methodologies provide
guidance:

How much involvement of the customer?
How much planning?

How much reuse?

How much modeling before coding?

How much process?

How much control and monitoring?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

24

Scrum as Methodology

Involvement of the customer
e Onsite customer

Planning
* Checklists and incremental daily plans

Reuse
* Checklists from previous projects

Modeling

« Models may or may not be used
Process

o Iterative, incremental process

Control and Monitoring
e Daily meetings.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

25

Components of Scrum

e Scrum Roles
e Scrum Master, Scrum Team, Product Owner

 Process
e Sprint Planning Meeting
» Kickoff Meeting
e Sprint (~~ Iteration in a Unified Process)
e Daily Scrum Meeting
e Sprint Review Meeting

e Scrum Artifacts
 Product Backlog, Sprint Backlog
« Burndown Charts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

26

Overview of Scrum

DAILY SCRUM
MEETING

24 HOURS

PrRODUCT SPRINT
BACKLOG BACKLOG

Source: http://www.mountaingoatsoftware.com/scrum-figures

POTENTIALLY
SHIPPABLE
PrROoDuUCT
INCREMENT

copyrRiIGHT © 2005, MouNnNTAaIiIN GOAT SOFTWARE

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Scrum Master

Represents management to the project

Typically filled by a project manager or team
leader

Responsible for enacting scrum values and
practices

Main job is to remove impediments.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

28

The Scrum Team

Typically 5-6 people

Cross-functional (QA, Programmers, Ul
Designers, etc.)

Members should be full-time
Team is self-organizing
Membership can change only between sprints

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

29

Product Owner

e KNnows what needs to be build and in
what sequence this should be done

e Typically a product manager

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

30

Scrum Process Activities

e Project-Kickoff Meeting
e Sprint Planning Meeting
e Sprint

e Daily Scrum Meeting

e Sprint Review Meeting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Pattern

s, and Java

31

Project-Kickoff Meeting

* A collaborative meeting in the beginning of the
project
o Participants: Product Owner, Scrum Master

» Takes 8 hours and consists of 2 parts (“before lunch
and after lunch”)

e Goal: Create the Product Backlog

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Sprint Planning Meeting

* A collaborative meeting in the beginning of each
Sprint

o Participants: Product Owner, Scrum Master and Scrum
Team

« Takes 8 hours and consists of 2 parts (“before
lunch and after lunch™)

 Goal: Create the Sprint Backlog

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Sprint

« A month-long iteration, during which is
incremented a product functionality

e No outside influence can interference with the
Scrum team during the Sprint

 Each day in a Sprint begins with the Daily Scrum
Meeting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Daily Scrum Meeting

e Is a short (15 minutes long) meeting, which is
held every day before the Team starts working

e Participants:
e Scrum Master (which is the chairman), Scrum Team

e Every Team member should answer on 3
questions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Questions for each Scrum Team Member

1. Status:
What did I do since the last Scrum meeting?

2. Issues:
What is stopping me getting on with the work?

3. Action items:
What am I doing until the next Scrum meeting?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Summary

« XP and Scrum are agile software development
methodologies with focus on

 Empirical process control model
 Changing requirements are the norm
e Controlling conflicting interests and needs

 Very simple processes with clearly defined rules

e Self-organizing teams, where each team
member carries a lot of responsibility

« No extensive documentation
 Possibility for “undisciplined hacking”.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

