
BİL595	
Distributed	Data	Processing	and	Analysis	

«Big	Data»	
	

MapReduce	
Spring	2017	

	
Erdogan	Dogdu	

Çankaya	University	
Department	of	Computer	Engineering	

	
	

Slides	adapted	from	Jimmy	Lin’s	class	
hNps://lintool.github.io/bigdata-2016w/syllabus.html	

What is this course about?

Execution 
Infrastructure

Analytics
Infrastructure

Data Science

Tools

Th
is	
Co

ur
se
	

“big data stack”

2	

Buzzwords

MapReduce, Spark, noSQL,
Flink, Pig, Hive, Dryad, Pregel,
Giraph, Storm

Execution 
Infrastructure

Analytics
Infrastructure

Data Science

Tools

Th
is	
Co

ur
se
	

Text: frequency estimation,
language models, inverted
indexes

Graphs: graph traversals,
random walks (PageRank)

Relational data: SQL, joins,
column stores

Data mining: hashing, clustering
(k-means), classification,
recommendations

Streams: probabilistic data
structures (Bloom filters, CMS,
HLL counters)

data analytics, business
intelligence, OLAP, ETL, data
warehouses and data lakes

This course focuses on algorithm design and “thinking at scale”

“big data stack”

3	

Source:	Google	

Tackling Big Data

4	

Divide	and	Conquer	

“Work”

w1 w2 w3

r1 r2 r3

“Result”

worker worker worker

Partition

Combine

5	

Paralleliza[on	Challenges	

•  How	do	we	assign	work	units	to	workers?	
•  What	if	we	have	more	work	units	than	
workers?	

•  What	if	workers	need	to	share	par[al	results?	
•  How	do	we	aggregate	par[al	results?	
•  How	do	we	know	all	the	workers	have	
finished?	

•  What	if	workers	die?	
What’s the common theme of all of these problems?

6	

Common	Theme?	

•  Paralleliza[on	problems	arise	from:	
– Communica[on	between	workers	(e.g.,	to	
exchange	state)	

– Access	to	shared	resources	(e.g.,	data)	
•  Thus,	we	need	a	synchroniza[on	mechanism	

7	

Source:	Ricardo	Guimarães	Herrmann	
8	

Managing	Mul[ple	Workers	
•  Difficult	because	

–  We	don’t	know	the	order	in	which	workers	run	
–  We	don’t	know	when	workers	interrupt	each	other	
–  We	don’t	know	when	workers	need	to	communicate	par[al	results	
–  We	don’t	know	the	order	in	which	workers	access	shared	data	

•  Thus,	we	need:	
–  Semaphores	(lock,	unlock)	
–  Condi[onal	variables	(wait,	no[fy,	broadcast)	
–  Barriers	

•  S[ll,	lots	of	problems:	
–  Deadlock,	livelock,	race	condi[ons...	
–  Dining	philosophers,	sleeping	barbers,	cigareNe	smokers...	

•  Moral	of	the	story:	be	careful!	

9	

Current	Tools	

•  Programming	models	
– Shared	memory	(pthreads)	
– Message	passing	(MPI)	

•  Design	PaNerns	
– Master-slaves	
– Producer-consumer	flows	
– Shared	work	queues	

Message	Passing	

P1	 P2	 P3	 P4	 P5	

Shared	Memory	

P1	 P2	 P3	 P4	 P5	

M
em

or
y	

master	

slaves	

producer	 consumer	

producer	 consumer	

work	queue	

10	

Where	the	rubber	meets	the	road	
•  Concurrency	is	difficult	to	reason	about	
•  Concurrency	is	even	more	difficult	to	reason	about	

–  At	the	scale	of	datacenters	and	across	datacenters	
–  In	the	presence	of	failures	
–  In	terms	of	mul[ple	interac[ng	services	

•  Not	to	men[on	debugging…	
•  The	reality:	

–  Lots	of	one-off	solu[ons,	custom	code	
– Write	you	own	dedicated	library,	then	program	with	it	
–  Burden	on	the	programmer	to	explicitly	manage	
everything	

11	

Source:	Wikipedia	(Flat	Tire)	
12	

Source:	Google	

The datacenter is the computer!

13	

The	datacenter	is	the	computer	

•  It’s	all	about	the	right	level	of	abstrac[on	
– Moving	beyond	the	von	Neumann	architecture	
– What’s	the	“instruc[on	set”	of	the	datacenter	computer?	

•  Hide	system-level	details	from	the	developers	
–  No	more	race	condi[ons,	lock	conten[on,	etc.	
–  No	need	to	explicitly	worry	about	reliability,	fault	
tolerance,	etc.	

•  Separa[ng	the	what	from	the	how	
–  Developer	specifies	the	computa[on	that	needs	to	be	
performed	

–  Execu[on	framework	(“run[me”)	handles	actual	execu[on	
MapReduce is the first instantiation of this idea…

14	

Source:	Google	

MapReduce

15	

Typical	Big	Data	Problem	

•  Iterate	over	a	large	number	of	records	
•  Extract	something	of	interest	from	each	
•  Shuffle	and	sort	intermediate	results	
•  Aggregate	intermediate	results	
•  Generate	final	output	

Key idea: provide a functional abstraction for
these two operations

Map

Reduce

(Dean	and	Ghemawat,	OSDI	2004)	 16	

g	 g	 g	 g	 g	

f	 f	 f	 f	 f	Map

Fold

Roots	in	Func[onal	Programming	

scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1, 2, 3, 4, 5)

scala> t.map(n => n*n)
res0: Array[Int] = Array(1, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
res1: Int = 55

Functional programming +
distributed computing!

17	

MapReduce	

•  Programmers	specify	two	func[ons:	
map	(k1,	v1)	→	[<k2,	v2>]	
reduce	(k2,	[v2])	→	[<k3,	v3>]	
– All	values	with	the	same	key	are	sent	to	the	same	
reducer	

•  The	execu[on	framework	handles	everything	
else…	

18	

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce	

•  Programmers	specify	two	func[ons:	
map	(k,	v)	→	<k’,	v’>*	
reduce	(k’,	v’)	→	<k’,	v’>*	
– All	values	with	the	same	key	are	sent	to	the	same	
reducer	

•  The	execu[on	framework	handles	everything	
else…	

What’s “everything else”?
20	

MapReduce	“Run[me”	
•  Handles	scheduling	

– Assigns	workers	to	map	and	reduce	tasks	
•  Handles	“data	distribu[on”	

– Moves	processes	to	data	
•  Handles	synchroniza[on	

– Gathers,	sorts,	and	shuffles	intermediate	data	
•  Handles	errors	and	faults	

– Detects	worker	failures	and	restarts	
•  Everything	happens	on	top	of	a	distributed	FS	
(later)	

21	

MapReduce	
•  Programmers	specify	two	func[ons:	

map	(k,	v)	→	<k’,	v’>*	
reduce	(k’,	v’)	→	<k’,	v’>*	
–  All	values	with	the	same	key	are	reduced	together	

•  The	execu[on	framework	handles	everything	else…	
•  Not	quite…usually,	programmers	also	specify:	

par))on	(k’,	number	of	par[[ons)	→	par[[on	for	k’	
–  Oxen	a	simple	hash	of	the	key,	e.g.,	hash(k’)	mod	n	
–  Divides	up	key	space	for	parallel	reduce	opera[ons	
combine	(k’,	v’)	→	<k’,	v’>*	
– Mini-reducers	that	run	in	memory	axer	the	map	phase	
–  Used	as	an	op[miza[on	to	reduce	network	traffic	

22	

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

Two	more	details…	

•  Barrier	between	map	and	reduce	phases	
– But	we	can	begin	copying	intermediate	data	
earlier	

•  Keys	arrive	at	each	reducer	in	sorted	order	
– No	enforced	ordering	across	reducers	

24	

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

MapReduce	can	refer	to…	

•  The	programming	model	
•  The	execu[on	framework	(aka	“run[me”)	
•  The	specific	implementa[on	

Usage is usually clear from context!

26	

MapReduce	Implementa[ons	
•  Google	has	a	proprietary	implementa[on	in	C++	

–  Bindings	in	Java,	Python	
•  Hadoop	provides	an	open-source	
implementa[on	in	Java	
– Development	led	by	Yahoo,	now	an	Apache	project	
– Used	in	produc[on	at	Yahoo,	Facebook,	TwiNer,	
LinkedIn,	Ne}lix,	…	

–  Large	and	expanding	soxware	ecosystem	
–  Poten[al	point	of	confusion:	Hadoop	is	more	than	
MapReduce	today	

•  Lots	of	custom	research	implementa[ons	

27	

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

We’ll discuss physical execution in detail later…

Reading Assignment
¢  Read Ch.1-2 from the main textbook

¢  http://lintool.github.io/MapReduceAlgorithms/ed1n/MapReduce-
algorithms.pdf

Be Prepared…

Source: Wikipedia (The Scream)

“Hadoop Zen”
¢  Parts of the ecosystem are still immature

l  We’ve come a long way since 2007, but still far to go…
l  Bugs, undocumented “features”, inexplicable behavior, etc.

l  Different versions = major pain

¢  Don’t get frustrated (take a deep breath)…
l  Those W$*#T@F! moments

¢  Be patient…
l  We will inevitably encounter “situations” along the way

¢  Be flexible…
l  We will have to be creative in workarounds

¢  Be constructive…
l  Tell me how I can make everyone’s experience better

Source: Wikipedia (Japanese rock garden)

“Hadoop Zen”

Source: Wikipedia (Japanese rock garden)

Questions?

