

Scikit-learn

Programmazione Orientata agli Oggetti
e

Scripting in Python

Matplotlib extra concepts

ListedColormap(colors)

Colormap object generated from a list of colors. This
may be most useful when indexing directly into a
colormap, but it can also be used to generate special
colormaps for ordinary mapping.
colors: a list of matplotlib color specifications, or an
equivalent Nx3 or Nx4 floating point array (N rgb or
rgba values)
>>> from matplotlib.colors import ListedColormap

>>> m = ListedColormap(['r','g','b']) #assigns the
indexes: 0 for r, 1 for g, 2 for b

Matplotlib extra concepts

scatter(x, y, c = colors, cmap = colormap)

Make a scatter plot of x vs y
x,y: sequence like objects (e.g., mono-dimensional
arrays) of the same lengths.
c : color or sequence of color, optional, default is blue.
It can be

 a single color format string
a sequence of color specifications of length N
a sequence of N numbers to be mapped to colors using the
cmap and norm specified via kwargs (see below).

cmap : Colormap, optional, default: None

Matplotlib extra concepts

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> N = 50

>>> x = np.random.rand(N)

>>> y = np.random.rand(N)

>>> colors = np.random.rand(N)

>>> plt.scatter(x, y, c=colors)

>>> plt.show()

Scikit-learn: basic information

Machine Learning library
Designed to inter-operate with NumPy and SciPy
Features:

Classification
Clustering
Regression
...

Website: http://scikit-learn.org/

Import
>>> import sklearn

What is Machine Learning?

ML: art of creating a compact explanation of the world
using a large amount of data from the world
Formally, ML is the field of computer science that deals
with the study and the development of systems that
can learn from data

What is Machine Learning?

Definitions
Model: the collection of parameters you are trying to fit
Data: what you are using to fit the model
Target: the value you are trying to predict with your
model
Features: attributes of your data that will be used in
prediction
Methods: algorithms that will use your data to fit a
model

Learning problem

A learning problem considers a set of n samples of data
and then tries to predict properties of unknown data
Supervised learning

the systems learns from already labeled data (training set)
how to predict the class of the unknown samples (test set).
The task is called classification.
if the desired output consists of one or more continuous
variables, then the task is called regression.

Learning problem

Unsupervised learning
All samples are unlabeled
Tasks:

find groups of similar samples (clustering)

determine the data distribution (density estimation)

project data from high-dimensional space to a low-
dimensional space (dimensionality reduction)

Datasets: toy data

Scikit-learn comes with a few standard datasets.

load_boston() #Load and return the boston
house-prices dataset (regression)
load_iris() #Load and return the iris
dataset (classification)
load_diabetes() #Load and return the
diabetes dataset (regression)
load_digits([n_class]) #Load and return the
digits dataset (classification)
load_linnerud() #Load and return the
linnerud dataset (multivariate regression)

A dataset object contains the following fields (n is the
number of samples, m the number of features):

data: a 2D-array, with dimensions (n, m)
feature_names: a list containing the names of the features
Note: the size is m.
target: an array containing the numbers associated to the
classes of samples (for supervised learning). The size is n.
target_names: an array containing the names of the classes
(for supervised learning)

Datasets: toy data

Example of dataset import:
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris.data

 array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 …

>>> iris.feature_names
 ['sepal length (cm)',
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']
>>> iris.target

 array([0, 0, 0, 0, 0, 0, 0, 0, ...

>>> iris.target_names
 array(['setosa', 'versicolor', 'virginica'],
 dtype='|S10')

Datasets: toy data

Datasets: sample images

Scikit-learn also embed a couple of 2D sample images
load_sample_images() #Load the couple of
sample images
load_sample_image(image_name) #Load the
numpy array of a single sample image
>>> from sklearn import datasets as ds
>>> from matplotlib import pyplot as pl
>>> images = ds.load_sample_images()
>>> pl.imshow(images.images[0])

Datasets: sample images

>>> im = ds.load_sample_image('flower.jpg')
>>> pl.imshow(im)

Datasets: Olivetti faces data

Set of face images
fetch_olivetti_faces() #Load the face dataset
(40 subjects, 10 image per subject)

data: numpy array of shape (400, 4096), each row being a
flatted face image of 64 x 64 pixels.
images: numpy array of shape (400, 64, 64), each row being
a face image one subject of the dataset.
target: numpy monodimensional array , each element being
a label, ranging from 0-39 and corresponding to the subject
ID.
DESCR: description of the dataset

Datasets: Olivetti faces data

>>> images = ds.fetch_olivetti_faces()

>>> pl.imshow(images.images[0])

>>> print images.target[0]

 0

Datasets: 20 newsgroups

Set of 18000 textual posts on 20 topics, splitted in
training and test set
fetch_20newsgroups(subset = 'train/test')
#Load a list of the raw texts of posts

data: list of raw text posts.
filenames: list of file where data are stored.
target: numpy monodimensional array containing the
integer index of the associated category.
target_names: labels of the categories.

fetch_20newsgroups_vectorized() #Returns
ready-to-use features

Datasets: 20 newsgroups

It is possible to load only a sub-selection of the
categories by passing the list of the categories

>>> cats = ['alt.atheism', 'sci.space']

>>> text = ds.fetch_20newsgroups(subset =
'train', categories = cats)

>>> list(text.target_names)

 ['alt.atheism', 'sci.space']

>>> text.filenames.shape

 (1073,)

Datasets transformation: feature extraction

Extraction of features in a format supported by
machine learning algorithms from datasets
Note: Feature extraction is different from Feature
selection: the former consists in transforming arbitrary
data, such as text or images, into numerical features
usable for machine learning. The latter is a machine
learning technique applied on these features.

Feature extraction: loading from dictionary

The class DictVectorizer is used to convert
features represented as lists of dict objects to the
NumPy/SciPy representation used by scikit-learn
estimators.
Useful methods os DictVectorizer class (X being dicts
or mappings of feature objects):

fit_transform(X): returns feature vectors (array or
sparse matrix)
get_feature_names(): returns a list of feature name,
ordered by indexes.
inverse_transform(Y): transform array or sparse matrix
back to feature mappings.

Feature extraction: loading from dictionary

>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Fransisco', 'temperature': 18.},
...]
>>> from sklearn.feature_extraction import
DictVectorizer
>>> vec = DictVectorizer()
>>> vec.fit_transform(measurements).toarray()
 array([[1., 0., 0., 33.],
 [0., 1., 0., 12.],
 [0., 0., 1., 18.]])
>>> vec.get_feature_names()
 ['city=Dubai', 'city=London',
 'city=San Fransisco', 'temperature']

Text feature extraction

Bag of Words: documents are described by word
occurrences while ignoring the position of the words in
the document.

Tokenization of strings and indexing of each possible token
(e.g., white-spaces and punctuation as token separators).
Count of the occurrences of tokens in each document.
Normalization and weighting (tokens that occur in the
majority of samples / documents are less important).

Each token occurrence frequency is a feature.
A corpus can be represented by a matrix with one row
per document and one column per token (e.g., word).

Text feature extraction

CountVectorizer: turns a collection of text documents into
numerical feature vectors.

>>> from sklearn.feature_extraction.text import
CountVectorizer
>>> c = CountVectorizer()
>>> c
 CountVectorizer(analyzer=u'word',
 binary=False, charset=None,
 charset_error=None, decode_error=u'strict',
 dtype=<type 'numpy.int64'>,
 encoding=u'utf-8', input=u'content',
 lowercase=True, max_df=1.0, max_features=None,
 min_df=1, ngram_range=(1, 1),
 preprocessor=None, stop_words=None,
 strip_accents=None,
 token_pattern=u'(u?)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None)

Text feature extraction

Tf-Idf term weighting: in a large text corpus, frequent
words carry very little meaningful information about
the actual contents of the document (e.g. “the”, “a”, “is”
in English).
In order to re-weight the count features into floating
point values suitable for usage by a classifier it is very
common to use the tf–idf transform.
Tf means term-frequency while idf means inverse
document-frequency.
This normalization is performed by the
TfidfTransformer class.

Text feature extraction

CountVectorizer: turns a collection of text documents into
numerical feature vectors.

>>> from sklearn.feature_extraction.text import
TfidfTransformer
>>> transformer = TfidfTransformer()
>>> counts = [[3, 0, 1],
... [2, 0, 0],
... [3, 0, 0],
... [4, 0, 0],
... [3, 2, 0],
... [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
 <6x3 sparse matrix of type '<... 'numpy.float64'>'
 with 9 stored elements in Compressed Sparse ...
 format>

Text feature extraction

>>> tfidf.toarray()
 array([[0.85..., 0. ..., 0.52...],
 [1. ..., 0. ..., 0. ...],
 [1. ..., 0. ..., 0. ...],
 [1. ..., 0. ..., 0. ...],
 [0.55..., 0.83..., 0. ...],
 [0.63..., 0. ..., 0.77...]])

 As tf–idf is very often used for text features, there is also another class called
TfidfVectorizer that combines all the options of CountVectorizer
and TfidfTransformer in a single model

>>> from sklearn.feature_extraction.text import
TfidfVectorizer
>>> vectorizer = TfidfVectorizer()
>>> vectorizer.fit_transform(corpus)
...
 <4x9 sparse matrix of type '<... 'numpy.float64'>'
 with 19 stored elements in Compressed Sparse ... format>

Dataset transformation: preprocessing

The preprocessing package provides common
utility functions and transformer classes to change raw
feature vectors into more suitable representations.
Standardization: several estimators require data with
Gaussian distribution with zero mean and unit
variance.
The function scale provides a quick and easy way to
perform this operation on a single array-like dataset.

Preprocessing: gaussian scaling

>>> from sklearn import preprocessing
>>> import numpy as np

>>> X = np.array([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled.mean(axis = 0)
 array([0., 0., 0.])
>>> X_scaled.std(axis = 0)
 array([1., 1., 1.])

Preprocessing: normalization

Normalization: process of scaling individual samples to have unit
norm.
The function normalize provides a quick and easy way to perform this
operation on a single array-like dataset, either using the L1 or L2 norms:
>>> X = ([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
>>> X_normalized = preprocessing.normalize(X, norm =
'l2')
>>> X_normalized
 array([[0.40..., -0.40..., 0.81...],
 [1. ..., 0. ..., 0. ...],
 [0. ..., 0.70..., -0.70...]])

Preprocessing: binarization

Feature binarization: process of thresholding numerical features
to get Boolean values.
The class Binarizer provides way to perform this operation on a
single array-like dataset:
>>> X = ([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
>>> b = preprocessing.Binarizer(threshold = 0.0)
>>> X_binarized = b.transform(X)
>>> X_binarized
 array([[1., 0., 1.],
 [1., 0., 0.],
 [0., 1., 0.]])

Preprocessing: dimensionality reduction

If the number of features is high, it may be useful to reduce it with an
unsupervised step prior to supervised steps.
Principal Component Analysis (PCA): linear dimensionality reduction using
Singular Value Decomposition and keeping only the most significant vectors to
project the data to a lower dimensional space.
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1, 1], [-2, -1, 3], [-3, -2, -1],
[1, 1, 4], [2, 1, -2], [3, 2, 0]])
>>> pca = PCA(n_components = 2)
>>> pca.fit_transform(X)
 array([[-1.37906599, -0.19483452],
 [-2.67976904, 1.58289587],
 [-3.05951071, -2.64246464],
 [0.57960659, 3.41925573],
 [2.83966112, -2.22778034],
 [3.69907808, 0.06292795]], dtype=float32)

Feature selection

Feature selection: process of selecting a subset of
relevant features, either to improve estimators’
accuracy scores or to boost their performance on very
high-dimensional datasets.
SkLearn provides a module containing the main
algorithms and utilities for feature selection tasks
(feature_selection module)

Feature selection

Functions of feature_selection:
SelectPercentile([...]): select features according to
a percentile of the highest scores.
SelectKBest([score_func, k]): select features
according to the k highest scores.
RFE(estimator[, …]): feature ranking with recursive
feature elimination.
VarianceThreshold([threshold]): feature selector
that removes all low-variance features.
feature_selection.chi2(X, y): compute chi-
squared statistic for each class/feature combination.
...

Feature selection

Removing features with low variance:
>>> from sklearn.feature_selection import
VarianceThreshold
>>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0,
1, 1], [0, 1, 0], [0, 1, 1]]
>>> sel = VarianceThreshold(threshold = .2)
>>> sel.fit_transform(X)
 array([[0, 1],
 [1, 0],
 [0, 0],
 [1, 1],
 [1, 0],
 [1, 1]])

End of part I

Classification

In machine learning, classification is the problem of
identifying to which of a set of categories (sub-
populations) a new observation belongs, on the basis of
a training set of data containing observations (or
instances) whose category membership is known.
Classification is considered an instance of supervised
learning, i.e., learning where a training set of correctly
identified observations is available.

Decision Trees

Decision Trees (DTs) are used for classification and
regression. The goal is to create a model that predicts
the value of a target variable by learning simple
decision rules inferred from the data features. The
deeper the tree, the more complex the decision rules
and the fitter the model.

Play Tennis?

Decision Tree Classifier

DecisionTreeClassifier is a class capable of
performing multi-class classification on a dataset. As other
classifiers, it take as input two arrays: an array X of size
[n_samples, n_features] holding the training samples, and
an array Y of integer values, size [n_samples], holding the
class labels for the training samples:
>>> from sklearn import tree

>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()

>>> clf = clf.fit(X, Y) #data fitting

Decision Tree Classifier

After being fitted, the model can then be used to predict new
values:
>>> clf.predict([[2., 2.]])
 array([1])

Example #2
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)
>>> clf.predict(iris.data[0, :])
 array([0])

Nearest Neighbors Classification

Finds a predefined number of training samples closest in
distance to the new point, and predicts the label from
these. The number of samples (k) can be a user-defined
constant (k-nearest neighbor, kNN), or vary based on
the local density of points (radius-based neighbor).
Scikit-learn implements two different nearest neighbors
classifiers: KNeighborsClassifier implementsthe
kNN classifier, RadiusNeighborsClassifier
implements lthe radius-based neighbor classifier.
>>> from sklearn import neighbors

Nearest Neighbors Classification

KNN classifier class
KNeighborsClassifier(n_neighbors,
weights = weights)

n_neighbors: the value of k
weights: the weighting function for each neighbor:

'uniform': assigns uniform weights to each neighbor
'distance': weights are proportional to the inverse of
the distance from the query point
alternatively, a user-defined function of the distance
can be supplied

Nearest Neighbors Classification

Example: iris dataset
>>> from matplotlib.colors import ListedColormap

>>> from sklearn import neighbors, datasets

>>> iris = datasets.load_iris()

>>> X = iris.data[:, :2] #We only take the first 2 features

>>> y = iris.target

>>> cmap_bold = ListedColormap(['#FF0000','#00FF00','#0000FF'])

>>> matplotlib.scatter(X[:, 0], X[:, 1], c = y, cmap = cmap_bold)

>>> matplotlib.title('Training data')

>>> matplotlib.show()

Nearest Neighbors Classification

Classifier settings
>>> clf = neighbors.KNeighborsClassifier(15, weights='uniform')
#Classifier instance

>>> clf.fit(X, y)

#generation of random test samples

>>> N = 100

>>> xx = [random.uniform(X[:, 0].min(), X[:, 0].max()) for i in range(N)]

>>> yy = [random.uniform(X[:, 1].min(), X[:, 1].max()) for i in range(N)]

>>> matplotlib.scatter(xx, yy)

>>> matplotlib.title('Test data')

>>> matplotlib.show()

Nearest Neighbors Classification

Classification
>>> points = np.array(zip(xx, yy))#test points

>>> Z = clf.predict(points)#classification

>>> plt.scatter(points[:, 0], points[:, 1], c=Z,
cmap=cmap_bold)

>>> matplotlib.scatter(xx, yy)

>>> matplotlib.title('Classified data')

>>> matplotlib.show()

Nearest Neighbors Classification
Increasing the test points is possible to see the classification regions
>>> N = 100000

…

For a complete example see the link
http://scikit-
learn.org/stable/auto_examples/neighbors/plot_classification.html#e
xample-neighbors-plot-classification-py

Naive Bayes

Naive Bayes methods are a set of algorithms based on
applying Bayes’ theorem with the “naive” assumption
of independence between every pair of features. Given
a class variable y and a dependent feature vector x,
Bayes’ theorem states the following relationship:

Using the feature independence assumption:

Naive Bayes

Since P(x1, …, xn) is constant given the input, we can use the
following classification rule:

and we can use Maximum A Posteriori (MAP) estimation to
estimate P(y) and P(x_i | y); the former is then the relative
frequency of class y in the training set.
The different naive Bayes classifiers differ mainly by the
assumptions they make regarding the distribution of P(x_i | y).
from sklearn import naive_bayes

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes
algorithm for classification. The likelihood of the
features is assumed to be Gaussian:

The parameters sy and my are estimated using
maximum likelihood.

Gaussian Naive Bayes

Example #1
>>> import numpy as np

>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
[1, 1], [2, 1], [3, 2]])

>>> Y = np.array([1, 1, 1, 2, 2, 2])

>>> from sklearn.naive_bayes import GaussianNB

>>> clf = GaussianNB()

>>> clf.fit(X, Y)

>>> print(clf.predict([[-0.8, -1]]))

 [1]

Gaussian Naive Bayes

Example #2
>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> from sklearn.naive_bayes import GaussianNB

>>> gnb = GaussianNB()

>>> y_pred = gnb.fit(iris.data,iris.target)
.predict(iris.data)

>>> print("Number of mislabeled points out of a
total %d points : %d" % (iris.data.shape[0],
(iris.target != y_pred).sum()))
 Number of mislabeled points out of a total 150
 points : 6

Multinomial Naive Bayes

MultinomialNB implements the naive Bayes algorithm
for multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification
(where the data are typically represented as word vector
counts, although tf-idf vectors are also known to work well
in practice). The distribution is parametrized by vectors
qy=(qy1, … ,qn) for each class y, where n is the number of
features (in text classification, the size of the vocabulary)
and qyi is the probability P(xi | y) of feature i appearing in a
sample belonging to class y.
The parameters qy is estimated by a smoothed version of
maximum likelihood

Multinomial Naive Bayes

Example
>>> import numpy as np

>>> X = np.random.randint(5, size=(6, 100))

>>> y = np.array([1, 2, 3, 4, 5, 6])

>>> from sklearn.naive_bayes import MultinomialNB

>>> clf = MultinomialNB()

>>> clf.fit(X, y)

>>> print(clf.predict(X[2]))
[3]

Bernoulli Naive Bayes

BernoulliNB implements the naive Bayes training
and classification algorithms for data that is distributed
according to multivariate Bernoulli distributions; i.e.,
there may be multiple features but each one is assumed
to be a binary-valued (Bernoulli, boolean) variable.
Therefore, this class requires samples to be represented
as binary-valued feature vectors; if handed any other
kind of data, a BernoulliNB instance may binarize its
input (depending on the binarize parameter).

Bernoulli Naive Bayes

Example
>>> import numpy as np

>>> X = np.random.randint(2, size=(5, 100))

>>> y = np.array([1, 2, 3, 4, 5])

>>> from sklearn.naive_bayes import BernoulliNB

>>> clf = BernoulliNB()

>>> clf.fit(X, y)

>>> print(clf.predict(X[2]))

[3]

If X is not binary, the object should be instanced with the binarize
parameter:
>>> clf = BernoulliNB(binarize=th)

#th is the threshold(floating value) for binarizing
features

Support Vector Machines

Support Vector Machines (SVMs) are models with
associated learning algorithms that analyze data and
recognize patterns. Given a set of training examples,
each marked as belonging to a distinct category, an
SVM training algorithm builds a model that assigns
new examples into one category, making it a non-
probabilistic binary linear classifier.

Support Vector Machines

A SVM constructs a hyper-plane (or set of hyper-
planes) in a high dimensional space. Intuitively, a good
separation is achieved by the hyper-plane that has the
largest distance to the nearest training data points of
any class (so-called functional margin), since in general
the larger the margin the lower the generalization error
of the classifier.

Support Vector Machines

SVC, NuSVC and LinearSVC are classes capable of
performing multi-class classification on a dataset.
SVC and NuSVC are similar methods, but accept
slightly different sets of parameters and have different
mathematical formulations (see
http://scikit-learn.org/stable/modules/svm.html for
the documentation). LinearSVC is another
implementation of Support Vector Classification for
the case of a linear kernel.

http://scikit-learn.org/stable/modules/svm.html

Support Vector Machines

Example: binary classification
>>> from sklearn import svm

>>> X = [[0, 0], [1, 1]]

>>> y = [0, 1]

>>> clf = svm.SVC()

>>> clf.fit(X, y)

>>> clf.predict([[2., 2.]])

 array([1])

Support Vector Machines

SVMs decision function depends on some subset of the training data,
called the support vectors. Some properties of these support vectors
can be found with the following methods:
>>> #get support vectors

>>> clf.support_vectors_

 array([[0., 0.],
 [1., 1.]])

>>> #get indices of support vectors

>>> clf.support_

 array([0, 1])

>>> #get number of support vectors for each class

>>> clf.n_support_

 array([1, 1])

Support Vector Machines

Multi-class classifications: SVC and NuSVC implement the “one-against-
one” approach for multi- class classification. If C is the number of
classes, then C (C - 1)/2 classifiers are constructed and each one trains
data from two classes:
>>> #get support vectors

>>> X = [[0], [1], [2], [3]]

>>> Y = [0, 1, 2, 3]

>>> clf = svm.SVC()

>>> clf.fit(X, Y)

>>> dec = clf.decision_function([[0.3]])

>>> dec.shape[1] #4 classes: 4*3/2 = 6

 6

>>> clf.predict([0.3])

 [0]

Support Vector Machines

Multi-class classifications: LinearSVC implements “one-vs-the-rest”
multi-class strategy, thus training C models. If there are only two
classes, only one model is trained:
>>> #get support vectors

>>> X = [[0], [1], [2], [3]]

>>> Y = [0, 1, 2, 3]

>>> clf = svm.LinearSVC()

>>> clf.fit(X, Y)

>>> dec = clf.decision_function([[0.3]])

>>> dec.shape[1] #4 classes: 4 models

 4

>>> clf.predict([0.3])

 [0]

Ensemble methods

Ensemble: combination of the predictions of several base
estimators built with a given learning algorithm in order to
improve generalizability / robustness over a single estimator.
Two families of ensemble methods are usually distinguished:

Averaging: the driving principle is to build several estimators
independently and then to average their predictions. On
average, the combined estimator is usually better than any of
the single base estimator because its variance is reduced.
Examples: Bagging, Random Forest,...
Boosting: base estimators are built sequentially and one tries to
reduce the bias of the combined estimator. The motivation is to
combine several weak models to produce a powerful ensemble.
Examples: AdaBoost, Gradient Tree Boosting, ...

Bagging classifier

Each classifier is trained on random subsets of the original training
set, with replacement (bootstraping) or not.

BaggingClassifier offers a unique class for performing the
bagging algorithms:

Pasting: each training set is a random subset of original training
set
Bagging: each random subset is drawn with replacements of
original samples
Random Subspacing: each training set is drawn as random subset
of features (with bootstraping on feature or not)
Random Patches: each classifier is built on subsets of both samples
and features

Bagging classifier

BaggingClassifier parameters:

base_estimator (optional, default=None) : the base estimator
to fit on random subsets of the dataset. If None, then the base
estimator is a decision tree.
n_estimators (optional, default=10): the number of base
estimators in the ensemble.
max_samples (optional, default=1.0): the number of samples to
draw from X to train each base estimator.
max_features (optional, default=1.0): the number of features to
draw from X to train each base estimator.
bootstrap (optional; default=True): whether samples are drawn
with replacement.

bootstrap_features (optional; default=False): whether
features are drawn with replacement.

Bagging classifier

Example:
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import
KNeighborsClassifier
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]
>>> y = iris.target
>>> bagging =
BaggingClassifier(KNeighborsClassifier(15))
>>> bagging.fit(X, y)
>>> bagging.predict([[5.4, 1.5], [3.6, 5.1]])
 array([1, 0])

Random forest classifier

The algorithm is based on randomized decision trees. It fits a number
of decision tree classifiers on various sub-samples of the dataset and
use averaging to improve the predictive accuracy and control over-
fitting. Each tree in the ensemble is built from a sample drawn with
replacement (i.e., a bootstrap sample) from the training set.

RandomForestClassifier main parameters:

n_estimators (optional, default=10): the number of trees in the
forest.
max_features (optional, default='auto'): the number of features
to consider when looking for the best split (values are integers,
float, 'sqrt', 'log2', 'None', 'auto')
bootstrap (optional; default=True): whether bootstrap samples
are used when building trees.

Random forest classifier

Example:
>>> from sklearn.ensemble import
RandomForestClassifier
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]
>>> y = iris.target
>>> rf =
RandomForestClassifier(n_estimators = 10)
>>> rf.fit(X, y)
>>> rf.predict([[5.4, 1.5], [3.6, 5.1]])
 array([1, 0])

AdaBoost classifier

Fitting sequence of weak learners (i.e., models that are
only slightly better than random guessing, such as small
decision trees) on repeatedly modified versions of the data.
The predictions are combined through a weighted majority
vote (or sum) to produce the final prediction.
The data modifications at each iteration consist of
applying weights to each of the training samples. Initially,
those weights are all set for simply training a weak learner
on the original data.
For each successive iteration, the sample weights are
individually modified and the learning algorithm is
reapplied to the reweighted data (boosting).

AdaBoost classifier

At a given step, those training examples that were
incorrectly predicted at the previous step have their
weights increased
Weights are decreased for those that were predicted
correctly.
Examples that are difficult to predict receive ever-
increasing influence. Each subsequent weak learner is
thereby forced to concentrate on the examples that are
missed by the previous ones in the sequence training set.

Random forest classifier

Example:
>>> from sklearn.ensemble import
AdaBoostClassifier
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]
>>> y = iris.target
>>> ada = AdaBoostClassifier(n_estimators =
100)
>>> ada.fit(X, y)
>>> ada.predict([[5.4, 1.5], [3.6, 5.1]])
 array([1, 0])

Multi-class vs multi-label classification

Multiclass: classification with more than two classes. Each
sample is assigned to one (and only one) label.
Multilabel: each sample is assigned at a set of target labels.
Multioutput-multiclass / multi-task: a single estimator
has to handle several joint classification tasks. This is a
generalization of the multi-label classification task, where
the set of classification problem is restricted to binary
classification, and of the multi-class classification task. The
output format is a 2d numpy array.
sklearn.multiclass: meta-estimators to solve multiclass
and multilabel classification problems by decomposition into
binary classification problems. Warning! All classifiers in
scikit-learn do multiclass classification out-of-the-box.

End of part II

Classifier evaluation

Evaluation is necessary in order to compare different
classifiers. How do we measure their performance? The
module metrics offers objects and functions aimed at the
evaluation for classification, regression, clustering, etc.
Most well-known metrics relies on the confusion matrix
Each column of the represents the instances in a predicted
class, while each row represents the instances in an actual
class.

Classifier evaluation: confusion matrix

Exampe of confusion matrix code:
>>> from sklearn.metrics import
confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
 array([[2, 0, 0],
 [0, 0, 1],
 [1, 0, 2]])

Classifier evaluation: confusion matrix

For a given category, the term confusion matrix is referred
to a table 2x2 that reports the number of false positives
(FP), false negatives (FN), true positives (TP), and true
negatives (TN).

Classification metrics

Binary classifier:

Accuracy

Precision

Recall

F1 score

a= TP+TN
TP+FP+FN+TN

p= TP
TP+FP

r= TP
TP+FN

f=2 ⋅p ⋅r
p+r

Classification metrics

Multiclass classifiers: there are 2 conventional methods for
calculating precision and recall

Micro-precision

Micro-recall

Macro-precision

Macro-recall

p=
∑i
TPi

∑i
(TPi+FPi)

r=
∑i
TPi

∑i
(TPi+FN i)

P=
∑i

pi
C

R=
∑i
ri

C

Classification metrics

Accuracy:
>>> from sklearn.metrics import accuracy_score

>>> y_true = [0, 2, 1, 3]

>>> y_pred = [0, 1, 2, 3]

#percentage of correctly classified samples

>>> accuracy_score(y_true, y_pred)

 0.5

#number of correctly classified samples

>>> accuracy_score(y_true, y_pred, normalize =
'False')

 0.5

Classification metrics

Precision: the parameter average determines the type of
averaging performed on the data. It can assume the values

None: the scores for each class are returned
micro: micro-precision is computed
macro: macro-precision is computed
weighted: the default value; the terms in the macro-
precision are weighted by the number of correct
instances for each class
samples: calculates metrics for each instance, and finds
their average (only meaningful for multilabel
classification)

Classification metrics

Precision:
>>> from sklearn.metrics import
precision_score

>>> y_true = [0, 1, 2, 0, 1, 2]

>>> y_pred = [0, 2, 1, 0, 0, 1]

>>> precision_score(y_true, y_pred, average =
None)

 array([0.66666667, 0., 0.])

>>> precision_score(y_true, y_pred, average =
'micro')

 0.33333333333333331

Classification metrics

Recall (same parameters of precision):
>>> from sklearn.metrics import recall_score

>>> y_true = [0, 1, 2, 0, 1, 2]

>>> y_pred = [0, 2, 1, 0, 0, 1]

>>> recall_score(y_true, y_pred, average =
None)

 array([1., 0., 0.])

>>> recall_score(y_true, y_pred, average =
'micro')

 0.33333333333333331

Classification metrics

F1-score (same parameters of precision):
>>> from sklearn.metrics import f1_score

>>> y_true = [0, 1, 2, 0, 1, 2]

>>> y_pred = [0, 2, 1, 0, 0, 1]

>>> f1_score(y_true, y_pred, average = None)

 array([0.8, 0., 0.])

>>> f1_score(y_true, y_pred, average =
'micro')

 0.33333333333333331

Classification metrics

The main classification metrics are summarized by the
method classification_score

>>> from sklearn.metrics import
classification_report

>>> y_true = [0, 1, 2, 0, 2, 2]

>>> y_pred = [0, 2, 1, 1, 0, 1]

>>> names = ['class 0', 'class 1', 'class 2']

#names matching the labels (optional)

Classification metrics

>>> classification_report(y_true, y_pred,
target_names = names)

 precision recall f1-score support

 class 0 0.50 0.50 0.50 2
 class 1 0.33 1.00 0.50 1
 class 2 1.00 0.33 0.50 3

avg / total 0.72 0.50 0.50 6

(support is the number of of occurrences of each class in y_true)

Cross validation

Definition of a dataset to test the model in the training phase (validation
set), in order to avoid overfitting. Module cross_validation.

Training set splitting:
>>> from sklearn import cross_validation, datasets

>>> iris = datasets.load_iris()

>> X_train, X_test, y_train, y_test =
cross_validation.train_test_split(iris.data,
iris.target, test_size=0.4) #40% of training set is
randomly taken as validation set

>>> X_train.shape, y_train.shape

 ((90, 4), (90,))

>>> X_test.shape, y_test.shape

 ((60, 4), (60,))

Cross validation

Splitting the training set is often not the best choice:
the number of samples which can be used for learning the
model is drastically reduced
the results can depend on a particular random choice for the
pair of (train, validation) sets.

K-Fold cross validation: the training set is split into k smaller
sets (folds). For each of the k “folds”:

a model is trained using k-1 folds as training data;
the remaining fold is used as a test set to validate the model
(e.g., by computing the accuracy).
the performance measure for each fold is then the averaged.

Cross validation

K-Fold cross validation:
>>> from sklearn import cross_validation,
datasets, svm

>>> iris = datasets.load_iris()

>>> X = iris.data

>>> y = iris.target

>>> clf = svm.SVC()

>>> cross_validation.cross_val_score(clf, X, y,
cv=5) #cv is the number of folds, I it is integer

 array([0.96666667, 1., 0.96666667,
0.96666667, 1.])
#the result array contains the accuracies
(default) of each fold

Cross validation

The parameter scoring permits to compute different metrics (e.g.,
giving the values 'precision', 'recall', or 'f1'):

>>> from sklearn import cross_validation,
datasets, svm

>>> iris = datasets.load_iris()

>>> X = iris.data

>>> y = iris.target

>>> clf = svm.SVC()

>>> cross_validation.cross_val_score(clf, X, y,
cv=5, scoring = 'precision') #cv is the number of
folds, I it is integer

 array([0.96969697, 1., 0.96969697,
0.96969697, 1.])

Cross validation: iterators

The module cross_validation provides utilities to generate indices
useful for splitting datasets for different cross validation methods:

Kfold: creates arrays of indices for k-fold c.v.
LeaveOneOut: each test set fold contains only one sample. The
LOO is equal to a n-fold c.v., n being the number of data samples.
LeavePOut: similar to LOO, but each test set contains p samples.

Example:
>>> from sklearn.cross_validation import KFold

>>> kf = KFold(4, n_folds=2) #4 samples, 2 folds

>>> for train, test in kf:

... print("%s %s" % (train, test))
 [2 3] [0 1]
 [0 1] [2 3]

Regression

The target value is expected to be a linear combination of
the input variables. In mathematical notion, if ŷ is the
predicted value.

Across the module, we designate the vector w=(w1,...,wp) as coef_ and
w0 as intercept_.

Linear regression: fits a linear model with coefficients w=(w1,...,wp)
to minimize the residual sum of squares between the observed
responses in the dataset, and the responses predicted by the linear
approximation.

ŷ (w, x)=w0+w1 x1+...+w p x p

Regression

Example of linear regression
>>> from sklearn import linear_model

>>> clf = linear_model.LinearRegression()

>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])

>>> clf.coef_

 [0.5 0.5]

>>> clf.intercept_

 2.22044604925e-16

Regression: evaluation metrics

Evaluation metrics for regression models (in module
metrics):

explained_variance_score(y_true,
y_pred): explained variance regression score function
mean_absolute_error(y_true, y_pred): mean
absolute error regression loss
mean_squared_error(y_true, y_pred[,...])

Mean squared error regression loss
...

Clustering

In machine learning, clustering is the task of grouping
a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense
or another) to each other than to those in other groups
(clusters).
Clustering is an instance of unsupervised learning, i.e.,
learning where the data are unlabeled.

Clustering

Clustering of unlabeled data can be performed with the
module sklearn.cluster.
Each clustering algorithm comes in two variants: a
class, that implements the fit method to learn the
clusters on train data, and a function, that, given train
data, returns an array of integer labels corresponding to
the different clusters. For the class, the labels over the
training data can be found in the labels_ attribute.

K-means clustering

The KMeans algorithm clusters data by trying to separate
samples in n groups of equal variance, in which each sample
belongs to the cluster with the nearest mean.
The means are commonly called the cluster “centroids”.
Number of clusters (k) need to be specified.
Algorithm:
1) Centroids are initially selected from the samples.
2) Each sample is assigned to the nearest centroid.
3) New centroids are created with the mean of all samples

assigned to each previous centroid
4)Iteration of (2) and (3) until centroids do not move

significantly

K-means clustering

Example:
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import KMeans
>>> from matplotlib.colors import ListedColormap

>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]
>>> cmap_light = ListedColormap(['r', 'b', 'y'])

>>> k_means = Kmeans(n_clusters = 3)
>>> k_means.fit(X)
>>> y_pred = k_means.predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c = y_pred,
cmap = cmap_light);

K-means clustering

Spectral clustering

SpectralClustering does a low-dimension
embedding of the affinity matrix between samples,
followed by a KMeans in the low dimensional space.
The number of clusters needs to be specified.
When calling fit, an affinity matrix is constructed.
Alternatively, using 'precomputed' for the affinity
parameter, a user-provided affinity matrix can be used.

Spectral clustering

Example:
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import
SpectralClustering

>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]

>>> sc = SpectralClustering(n_clusters = 4)
>>> y_pred = sc.fit_predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c = y_pred);

K-means clustering

Hierarchical clustering

Clustering algorithms that build nested clusters by
merging or splitting them successively. This hierarchy of
clusters is represented as a binary tree (or dendrogram).
The root of the tree is the unique cluster that gathers all
the samples, the leaves being the clusters with only one
sample.

Hierarchical clustering

Approaches:
Agglomerative: "bottom up" approach; each sample
starts in its own cluster, and pairs of clusters are merged
as one moves up the hierarchy.
Divisive: "top down" approach; all samples start in one
cluster, and splits are performed recursively as one
moves down the hierarchy.

Hierarchical clustering

The AgglomerativeClustering object perform the
bottom-up approach: it recursively merges the pair of
clusters that minimally increases a given linkage distance.
The linkage parameter determines the metric used for
the merge strategy (default value is 'ward'):
ward: minimizes the sum of squared differences within all
clusters.
complete: minimizes the maximum distance between
samples of pairs of clusters.
average: minimizes the average of the distances between all
samples of pairs of clusters.

Hierarchical clustering

Example:
>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets
>>> from sklearn.cluster import
AgglomerativeClustering

>>> iris = datasets.load_iris()
>>> X = iris.data[:, :2]

>>> ac = SpectralClustering(n_clusters = 5)
>>> y_pred = ac.fit_predict(X)
>>> plt.scatter(X[:, 0], X[:, 1], c = y_pred,
linkage='average');

Hierarchical clustering

The end

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106

