
Written by Roni Licher
Last updated Winter 2015-2016

236363 - Database Systems - Technion

Graph Database, think
different!

• Nodes
• Edges (directed or not)
• Properties

Neo4j and Cypher

• Graph database
 (Like SQL server e.g.
 PostgreSQL, MySQL)
• Implemented in Java

• Graph query
language for
Neo4J (Like
SQL)

• Declarative

A general query structure

MATCH [Nodes and relationships]
WHERE [Boolean filter statement]
RETURN [DISTINCT] [statements [AS alias]]
ORDER BY [Properties] [ASC\DESC]
SKIP [Number] LIMIT [Number]

First query

Get all nodes of type Program that have
the name Hello World!:

MATCH (a : Program)
WHERE a.name = ‘Hello World!’
RETURN a

Type =
Program
Name =
‘Hello

World!’

Query relationships
Get all relationships of type Author
connecting Programmers and Programs:

MATCH (a : Programmer)-[r : Author]->(b :
Program)
RETURN r

Type =
Progra

m

Type =
Programm

er

Author

Matching nodes and
relationships
Nodes:

(a), (), (:Ntype), (a:Ntype), (a{prop:’value’}) ,
(a:Ntype {prop:’value’ })

Relationships:
(a)--(b), (a)-->(b), (a)<--(b), (a)-->(),

 (a)-[r]->(b), (a)-[:Rtype]->(b), (a)-[:R1|:R2]->(b),
(a)-[r:Rtype]->(b)

May have more then 2 nodes:
(a)-->(b)<--(c), (a)-->(b)-->(c)

Path:
p = (a)-->(b)

More options:

• Relationship distance:
(a)-[:Rtype*2]->(b) – 2 hops of type Rtype.
(a)-[:Rtype*]->(b) – any number of hops of type
Rtype.
(a)-[:Rtype*2..10]-> (b) – 2-10 hops of Rtype.
(a)-[:Rtype* ..10]-> (b) – 1-10 hops of Rtype.
(a)-[:Rtype*2..]-> (b) – at least 2 hops of Rtype.

Could be used also as:
(a)-[r*2]->(b) – r gets a sequence of relationships
(a)-[*{prop:val}]->(b)

Operators
• Mathematical

+, -, *, /,%, ^ (power, not XOR)
• Comparison

 =,<>,<,>,>=,<=, =~ (Regex), IS NULL ,
IS NOT NULL
• Boolean

 AND, OR, XOR, NOT
• String

 Concatenation through +
• Collection

 Concatenation through +
 IN to check is an element exists in a

collection.

More WHERE options
• WHERE others.name IN ['Andres', 'Peter']

• WHERE user.age IN range (18,30)

• WHERE n.name =~ 'Tob.*‘

• WHERE n.name =~ '(?i)ANDR.*‘ - (case insensitive)

• WHERE (tobias)-->()

• WHERE NOT (tobias)-->()

• WHERE has(b.name)

• WHERE b.name? = 'Bob'
 (Returns all nodes where name = 'Bob' plus all nodes
without a name
 property)

Functions:
• On paths:

• MATCH shortestPath((a)-[*]-(b))
• MATCH allShorestPath((a)-[*]-(b))
• Length(path) – The path length or 0 if not exists.
• RETURN relationships(p) - Returns all relationships in a path.

• On collections:
• RETURN a.array, filter(x IN a.array WHERE length(x)= 3)

 FILTER - returns the elements in a collection that comply to a
predicate.

• WHERE ANY (x IN a.array WHERE x = "one“) – at least one
• WHERE ALL (x IN nodes(p) WHERE x.age > 30) – all elements
• WHERE SINGLE (x IN nodes(p) WHERE var.eyes = "blue") – Only

one
* nodes(p) – nodes of the path p

With

• Manipulate the result sequence before it
is passed on to the following query parts.

• Usage of WITH :
• Limit the number of entries that are then

passed on to other MATCH clauses.
• Introduce aggregates which can then be used

in predicates in WHERE.
• Separate reading from updating of the graph.

Every part of a query must be either read-
only or write-only.

With
MATCH (david { name: "David" })--(otherPerson)-->()

WITH otherPerson, count(*) AS foaf

WHERE foaf > 1

RETURN otherPerson

What will be returned?

The person connected to David with
the at least one outgoing relationship.

(2 {name:"Anders"})

More collections options
• MATCH (user)

 RETURN count(user)

• MATCH (user)

 RETURN count(DISTINCT user.name)

• MATCH (user)

 RETURN collect(user.name)
 Collection from the values, ignores NULL.

• MATCH (user)

 RETURN avg(user.age)
 Average numerical values. Similar functions are sum, min,
max.

Example

MATCH (c:Course)
WITH collect(c) AS courses
MATCH (s:Student)
WHERE ALL (x in courses WHERE (s)-[:Studies]->(x))
RETURN s.name

Dersi alan öğrencilerin isimlerini listeleyin.

Example

MATCH (s:Student)-[:Studies*2..4]-
>(:Student{Name:"Roy"})
RETURN DISTINCT s.name

"Roy" la en az 2 en fazla 4 dersi ortak olan öğrencilerin isimleri

Example

MATCH p=shortestPath((s1:Student {ID:'12345'})-[:Studies*]-
(s2:Student {ID:'67890'}))
RETURN length(p)/2

İki farklı öğrenci arasındaki mesafe işlevini şu şekilde tanımlarız:
1. Ortak bir kurs alınmışsa, A ve B öğrencileri 1 uzaktadır.
2. A ve B öğrencileri n = 1'dir, eğer n en küçük sayı ise, Öğrenci C'nin var olması
için A'nın n-1 mesafede olması ve C'nin B'nin 1 olması gerekir.
3. Böyle bir n mevcut değilse, mesafeyi 0 olarak tanımlayacağız.

Kimliği 12345 ve 67890 olan iki öğrenci arasındaki mesafe

Example

MATCH (l:Lecturer)-[:Teaches]->(c:Course)

WITH l, count(c) as numcourses

WHERE numcourses >= 3

RETURN l.name

En az 3 ders veren tüm öğretim elemanlarının isimleri

Graphs in Data Analytics
 Marketing Analytics – Graphs can be used to figure out the most
influential people in a Social Network. Advertisers and Marketers can
estimate the biggest bang for the marketing buck by routing their message
through the most influential people in a Social Network
 Banking Transactions – Graphs can be used to find unusual patterns
helping in mitigating Fraudulent transactions. There have been examples
where Terrorist activity has been detected by analyzing the flow of money
across interconnected Banking networks
 Supply Chain – Graphs help in identifying optimum routes for your
delivery trucks and in identifying locations for warehouses and delivery
centres
 Pharma – Pharma companies can optimize the routes of the salesman
using Graph theory. This helps in cutting costs and reducing the travel time
for salesman
 Telecom – Telecom companies typically use Graphs (Voronoi diagrams)
to understand the quantity and location of Cell towers to ensure maximum
coverage

Graph Theory concepts
connectivity - the minimum number of elements (nodes or edges) that
need to be removed to disconnect the remaining nodes from each other.
For network flow problems.
degree - number of edges incident to a vertex
eigenvector centrality - is a measure of the influence of a node in a
network. Google's PageRank and the Katz centrality are variants of this
closeness centrality - a measure of centrality of a node to a network,
calculated as the sum of the length of the shortest paths between the node
and all other nodes in the graph. Thus the more central a node is, the
closer it is to all other nodes.
Link analysis - In network theory, used to evaluate relationships
(connections) between graph nodes.
eccentricity of a vertex - maximum distance from a vertex to all other
vertices
radius of a connected graph - the minimum value of eccentricity from
all vertices
diameter of a connected graph - Unlike the radius of the connected
graph here we basically used the maximum value of eccentricity from all
vertices

Uygulamalar

py2neo-example.ipynb

Py2neo is a client library and toolkit for working with Neo4j from within
Python applications and from the command line.

networkx-example.ipynb

NetworkX is a Python package for the creation, manipulation, and study of
the structure, dynamics, and functions of complex networks.

Learn more…
Check Neo4j online version:

http://console.neo4j.org/

http://console.neo4j.org/
http://console.neo4j.org/
http://console.neo4j.org/

Learn more…
Download Neo4j for free:

http://neo4j.com/download/

http://neo4j.com/download/
http://neo4j.com/download/

Learn more…
Read the Neo4j manual:

http://neo4j.com/docs/stable/

Cypher tutorials:
http://neo4j.com/developer/cypher-query-lang
uage

/

More Neo4j developers tutorials:
http://neo4j.com/developer/get-started/

http://neo4j.com/docs/stable/
http://neo4j.com/docs/stable/
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/get-started/
http://neo4j.com/developer/get-started/

