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Abstract—
The success of machine learning algorithms generally depends on

data representation, and we hypothesize that this is because different
representations can entangle and hide more or less the different ex-
planatory factors of variation behind the data. Although specific domain
knowledge can be used to help design representations, learning with
generic priors can also be used, and the quest for AI is motivating
the design of more powerful representation-learning algorithms imple-
menting such priors. This paper reviews recent work in the area of
unsupervised feature learning and deep learning, covering advances
in probabilistic models, auto-encoders, manifold learning, and deep
networks. This motivates longer-term unanswered questions about the
appropriate objectives for learning good representations, for computing
representations (i.e., inference), and the geometrical connections be-
tween representation learning, density estimation and manifold learning.
Index Terms—Deep learning, representation learning, feature learning,
unsupervised learning, Boltzmann Machine, autoencoder, neural nets

1 INTRODUCTION

The performance of machine learning methods is heavily
dependent on the choice of data representation (or features)
on which they are applied. For that reason, much of the actual
effort in deploying machine learning algorithms goes into the
design of preprocessing pipelines and data transformations that
result in a representation of the data that can support effective
machine learning. Such feature engineering is important but
labor-intensive and highlights the weakness of current learning
algorithms: their inability to extract and organize the discrimi-
native information from the data. Feature engineering is a way
to take advantage of human ingenuity and prior knowledge to
compensate for that weakness. In order to expand the scope
and ease of applicability of machine learning, it would be
highly desirable to make learning algorithms less dependent
on feature engineering, so that novel applications could be
constructed faster, and more importantly, to make progress
towards Artificial Intelligence (AI). An AI must fundamentally
understand the world around us, and we argue that this can
only be achieved if it can learn to identify and disentangle the
underlying explanatory factors hidden in the observed milieu
of low-level sensory data.

This paper is about representation learning, i.e., learning
representations of the data that make it easier to extract useful
information when building classifiers or other predictors. In
the case of probabilistic models, a good representation is often
one that captures the posterior distribution of the underlying

explanatory factors for the observed input. A good representa-
tion is also one that is useful as input to a supervised predictor.
Among the various ways of learning representations, this paper
focuses on deep learning methods: those that are formed by
the composition of multiple non-linear transformations, with
the goal of yielding more abstract – and ultimately more useful
– representations. Here we survey this rapidly developing area
with special emphasis on recent progress. We consider some
of the fundamental questions that have been driving research
in this area. Specifically, what makes one representation better
than another? Given an example, how should we compute its
representation, i.e. perform feature extraction? Also, what are
appropriate objectives for learning good representations?

2 WHY SHOULD WE CARE ABOUT LEARNING
REPRESENTATIONS?
Representation learning has become a field in itself in the
machine learning community, with regular workshops at the
leading conferences such as NIPS and ICML, and a new
conference dedicated to it, ICLR1, sometimes under the header
of Deep Learning or Feature Learning. Although depth is an
important part of the story, many other priors are interesting
and can be conveniently captured when the problem is cast as
one of learning a representation, as discussed in the next sec-
tion. The rapid increase in scientific activity on representation
learning has been accompanied and nourished by a remarkable
string of empirical successes both in academia and in industry.
Below, we briefly highlight some of these high points.
Speech Recognition and Signal Processing

Speech was one of the early applications of neural networks,
in particular convolutional (or time-delay) neural networks 2.
The recent revival of interest in neural networks, deep learning,
and representation learning has had a strong impact in the
area of speech recognition, with breakthrough results (Dahl
et al., 2010; Deng et al., 2010; Seide et al., 2011a; Mohamed
et al., 2012; Dahl et al., 2012; Hinton et al., 2012) obtained
by several academics as well as researchers at industrial labs
bringing these algorithms to a larger scale and into products.
For example, Microsoft has released in 2012 a new version
of their MAVIS (Microsoft Audio Video Indexing Service)

1. International Conference on Learning Representations
2. See Bengio (1993) for a review of early work in this area.
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speech system based on deep learning (Seide et al., 2011a).
These authors managed to reduce the word error rate on
four major benchmarks by about 30% (e.g. from 27.4% to
18.5% on RT03S) compared to state-of-the-art models based
on Gaussian mixtures for the acoustic modeling and trained on
the same amount of data (309 hours of speech). The relative
improvement in error rate obtained by Dahl et al. (2012) on a
smaller large-vocabulary speech recognition benchmark (Bing
mobile business search dataset, with 40 hours of speech) is
between 16% and 23%.

Representation-learning algorithms have also been applied
to music, substantially beating the state-of-the-art in poly-
phonic transcription (Boulanger-Lewandowski et al., 2012),
with relative error improvement between 5% and 30% on a
standard benchmark of 4 datasets. Deep learning also helped
to win MIREX (Music Information Retrieval) competitions,
e.g. in 2011 on audio tagging (Hamel et al., 2011).

Object Recognition
The beginnings of deep learning in 2006 have focused on

the MNIST digit image classification problem (Hinton et al.,
2006; Bengio et al., 2007), breaking the supremacy of SVMs
(1.4% error) on this dataset3. The latest records are still held
by deep networks: Ciresan et al. (2012) currently claims the
title of state-of-the-art for the unconstrained version of the task
(e.g., using a convolutional architecture), with 0.27% error,
and Rifai et al. (2011c) is state-of-the-art for the knowledge-
free version of MNIST, with 0.81% error.

In the last few years, deep learning has moved from
digits to object recognition in natural images, and the latest
breakthrough has been achieved on the ImageNet dataset4

bringing down the state-of-the-art error rate from 26.1% to
15.3% (Krizhevsky et al., 2012).

Natural Language Processing
Besides speech recognition, there are many other Natural

Language Processing (NLP) applications of representation
learning. Distributed representations for symbolic data were
introduced by Hinton (1986), and first developed in the
context of statistical language modeling by Bengio et al.
(2003) in so-called neural net language models (Bengio,
2008). They are all based on learning a distributed repre-
sentation for each word, called a word embedding. Adding a
convolutional architecture, Collobert et al. (2011) developed
the SENNA system5 that shares representations across the
tasks of language modeling, part-of-speech tagging, chunking,
named entity recognition, semantic role labeling and syntactic
parsing. SENNA approaches or surpasses the state-of-the-art
on these tasks but is simpler and much faster than traditional
predictors. Learning word embeddings can be combined with
learning image representations in a way that allow to associate
text and images. This approach has been used successfully to
build Google’s image search, exploiting huge quantities of data
to map images and queries in the same space (Weston et al.,

3. for the knowledge-free version of the task, where no image-specific prior
is used, such as image deformations or convolutions

4. The 1000-class ImageNet benchmark, whose results are detailed here:
http://www.image-net.org/challenges/LSVRC/2012/results.html

5. downloadable from http://ml.nec-labs.com/senna/

2010) and it has recently been extended to deeper multi-modal
representations (Srivastava and Salakhutdinov, 2012).

The neural net language model was also improved by
adding recurrence to the hidden layers (Mikolov et al., 2011),
allowing it to beat the state-of-the-art (smoothed n-gram
models) not only in terms of perplexity (exponential of the
average negative log-likelihood of predicting the right next
word, going down from 140 to 102) but also in terms of
word error rate in speech recognition (since the language
model is an important component of a speech recognition
system), decreasing it from 17.2% (KN5 baseline) or 16.9%
(discriminative language model) to 14.4% on the Wall Street
Journal benchmark task. Similar models have been applied
in statistical machine translation (Schwenk et al., 2012; Le
et al., 2013), improving perplexity and BLEU scores. Re-
cursive auto-encoders (which generalize recurrent networks)
have also been used to beat the state-of-the-art in full sentence
paraphrase detection (Socher et al., 2011a) almost doubling the
F1 score for paraphrase detection. Representation learning can
also be used to perform word sense disambiguation (Bordes
et al., 2012), bringing up the accuracy from 67.8% to 70.2%
on the subset of Senseval-3 where the system could be applied
(with subject-verb-object sentences). Finally, it has also been
successfully used to surpass the state-of-the-art in sentiment
analysis (Glorot et al., 2011b; Socher et al., 2011b).
Multi-Task and Transfer Learning, Domain Adaptation

Transfer learning is the ability of a learning algorithm to
exploit commonalities between different learning tasks in order
to share statistical strength, and transfer knowledge across
tasks. As discussed below, we hypothesize that representation
learning algorithms have an advantage for such tasks because
they learn representations that capture underlying factors, a
subset of which may be relevant for each particular task, as
illustrated in Figure 1. This hypothesis seems confirmed by a
number of empirical results showing the strengths of repre-
sentation learning algorithms in transfer learning scenarios.

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 Task%A% Task%B% Task%C%

%output%

%input%

%shared%
subsets%of%
factors%

Fig. 1. Illustration of representation-learning discovering ex-
planatory factors (middle hidden layer, in red), some explaining
the input (semi-supervised setting), and some explaining target
for each task. Because these subsets overlap, sharing of statis-
tical strength helps generalization..

Most impressive are the two transfer learning challenges
held in 2011 and won by representation learning algorithms.
First, the Transfer Learning Challenge, presented at an ICML
2011 workshop of the same name, was won using unsuper-
vised layer-wise pre-training (Bengio, 2011; Mesnil et al.,
2011). A second Transfer Learning Challenge was held the

http://www.image-net.org/challenges/LSVRC/2012/results.html
http://ml.nec-labs.com/senna/
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same year and won by Goodfellow et al. (2011). Results
were presented at NIPS 2011’s Challenges in Learning Hier-
archical Models Workshop. In the related domain adaptation
setup, the target remains the same but the input distribution
changes (Glorot et al., 2011b; Chen et al., 2012). In the
multi-task learning setup, representation learning has also been
found advantageous Krizhevsky et al. (2012); Collobert et al.
(2011), because of shared factors across tasks.

3 WHAT MAKES A REPRESENTATION GOOD?
3.1 Priors for Representation Learning in AI
In Bengio and LeCun (2007), one of us introduced the
notion of AI-tasks, which are challenging for current machine
learning algorithms, and involve complex but highly structured
dependencies. One reason why explicitly dealing with repre-
sentations is interesting is because they can be convenient to
express many general priors about the world around us, i.e.,
priors that are not task-specific but would be likely to be useful
for a learning machine to solve AI-tasks. Examples of such
general-purpose priors are the following:
• Smoothness: assumes the function to be learned f is s.t.
x ≈ y generally implies f(x) ≈ f(y). This most basic prior
is present in most machine learning, but is insufficient to get
around the curse of dimensionality, see Section 3.2.
• Multiple explanatory factors: the data generating distribu-
tion is generated by different underlying factors, and for the
most part what one learns about one factor generalizes in many
configurations of the other factors. The objective to recover
or at least disentangle these underlying factors of variation is
discussed in Section 3.5. This assumption is behind the idea of
distributed representations, discussed in Section 3.3 below.
• A hierarchical organization of explanatory factors: the
concepts that are useful for describing the world around us
can be defined in terms of other concepts, in a hierarchy, with
more abstract concepts higher in the hierarchy, defined in
terms of less abstract ones. This assumption is exploited with
deep representations, elaborated in Section 3.4 below.
• Semi-supervised learning: with inputs X and target Y to
predict, a subset of the factors explaining X’s distribution
explain much of Y , given X . Hence representations that are
useful for P (X) tend to be useful when learning P (Y |X),
allowing sharing of statistical strength between the unsuper-
vised and supervised learning tasks, see Section 4.
• Shared factors across tasks: with many Y ’s of interest or
many learning tasks in general, tasks (e.g., the corresponding
P (Y |X, task)) are explained by factors that are shared with
other tasks, allowing sharing of statistical strengths across
tasks, as discussed in the previous section (Multi-Task and
Transfer Learning, Domain Adaptation).
• Manifolds: probability mass concentrates near regions that
have a much smaller dimensionality than the original space
where the data lives. This is explicitly exploited in some
of the auto-encoder algorithms and other manifold-inspired
algorithms described respectively in Sections 7.2 and 8.
• Natural clustering: different values of categorical variables
such as object classes are associated with separate manifolds.
More precisely, the local variations on the manifold tend to
preserve the value of a category, and a linear interpolation

between examples of different classes in general involves
going through a low density region, i.e., P (X|Y = i) for
different i tend to be well separated and not overlap much. For
example, this is exploited in the Manifold Tangent Classifier
discussed in Section 8.3. This hypothesis is consistent with the
idea that humans have named categories and classes because
of such statistical structure (discovered by their brain and
propagated by their culture), and machine learning tasks often
involves predicting such categorical variables.
• Temporal and spatial coherence: consecutive (from a se-
quence) or spatially nearby observations tend to be associated
with the same value of relevant categorical concepts, or result
in a small move on the surface of the high-density manifold.
More generally, different factors change at different temporal
and spatial scales, and many categorical concepts of interest
change slowly. When attempting to capture such categorical
variables, this prior can be enforced by making the associated
representations slowly changing, i.e., penalizing changes in
values over time or space. This prior was introduced in Becker
and Hinton (1992) and is discussed in Section 11.3.
• Sparsity: for any given observation x, only a small fraction
of the possible factors are relevant. In terms of representation,
this could be represented by features that are often zero (as
initially proposed by Olshausen and Field (1996)), or by the
fact that most of the extracted features are insensitive to small
variations of x. This can be achieved with certain forms of
priors on latent variables (peaked at 0), or by using a non-
linearity whose value is often flat at 0 (i.e., 0 and with a
0 derivative), or simply by penalizing the magnitude of the
Jacobian matrix (of derivatives) of the function mapping input
to representation. This is discussed in Sections 6.1.1 and 7.2.
• Simplicity of Factor Dependencies: in good high-level
representations, the factors are related to each other through
simple, typically linear dependencies. This can be seen in
many laws of physics, and is assumed when plugging a linear
predictor on top of a learned representation.

We can view many of the above priors as ways to help the
learner discover and disentangle some of the underlying (and
a priori unknown) factors of variation that the data may reveal.
This idea is pursued further in Sections 3.5 and 11.4.

3.2 Smoothness and the Curse of Dimensionality
For AI-tasks, such as vision and NLP, it seems hopeless to
rely only on simple parametric models (such as linear models)
because they cannot capture enough of the complexity of in-
terest unless provided with the appropriate feature space. Con-
versely, machine learning researchers have sought flexibility in
local6 non-parametric learners such as kernel machines with
a fixed generic local-response kernel (such as the Gaussian
kernel). Unfortunately, as argued at length by Bengio and
Monperrus (2005); Bengio et al. (2006a); Bengio and LeCun
(2007); Bengio (2009); Bengio et al. (2010), most of these
algorithms only exploit the principle of local generalization,
i.e., the assumption that the target function (to be learned)
is smooth enough, so they rely on examples to explicitly
map out the wrinkles of the target function. Generalization

6. local in the sense that the value of the learned function at x depends
mostly on training examples x(t)’s close to x
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is mostly achieved by a form of local interpolation between
neighboring training examples. Although smoothness can be
a useful assumption, it is insufficient to deal with the curse
of dimensionality, because the number of such wrinkles (ups
and downs of the target function) may grow exponentially
with the number of relevant interacting factors, when the data
are represented in raw input space. We advocate learning
algorithms that are flexible and non-parametric7 but do not
rely exclusively on the smoothness assumption. Instead, we
propose to incorporate generic priors such as those enumerated
above into representation-learning algorithms. Smoothness-
based learners (such as kernel machines) and linear models
can still be useful on top of such learned representations. In
fact, the combination of learning a representation and kernel
machine is equivalent to learning the kernel, i.e., the feature
space. Kernel machines are useful, but they depend on a prior
definition of a suitable similarity metric, or a feature space
in which naive similarity metrics suffice. We would like to
use the data, along with very generic priors, to discover those
features, or equivalently, a similarity function.

3.3 Distributed representations
Good representations are expressive, meaning that a
reasonably-sized learned representation can capture a huge
number of possible input configurations. A simple counting
argument helps us to assess the expressiveness of a model pro-
ducing a representation: how many parameters does it require
compared to the number of input regions (or configurations) it
can distinguish? Learners of one-hot representations, such as
traditional clustering algorithms, Gaussian mixtures, nearest-
neighbor algorithms, decision trees, or Gaussian SVMs all re-
quire O(N) parameters (and/or O(N) examples) to distinguish
O(N) input regions. One could naively believe that one cannot
do better. However, RBMs, sparse coding, auto-encoders or
multi-layer neural networks can all represent up to O(2k) input
regions using only O(N) parameters (with k the number of
non-zero elements in a sparse representation, and k = N in
non-sparse RBMs and other dense representations). These are
all distributed 8 or sparse9 representations. The generalization
of clustering to distributed representations is multi-clustering,
where either several clusterings take place in parallel or the
same clustering is applied on different parts of the input,
such as in the very popular hierarchical feature extraction for
object recognition based on a histogram of cluster categories
detected in different patches of an image (Lazebnik et al.,
2006; Coates and Ng, 2011a). The exponential gain from
distributed or sparse representations is discussed further in
section 3.2 (and Figure 3.2) of Bengio (2009). It comes
about because each parameter (e.g. the parameters of one of
the units in a sparse code, or one of the units in a Restricted

7. We understand non-parametric as including all learning algorithms
whose capacity can be increased appropriately as the amount of data and its
complexity demands it, e.g. including mixture models and neural networks
where the number of parameters is a data-selected hyper-parameter.

8. Distributed representations: where k out of N representation elements
or feature values can be independently varied, e.g., they are not mutually
exclusive. Each concept is represented by having k features being turned on
or active, while each feature is involved in representing many concepts.

9. Sparse representations: distributed representations where only a few of
the elements can be varied at a time, i.e., k < N .

Boltzmann Machine) can be re-used in many examples that are
not simply near neighbors of each other, whereas with local
generalization, different regions in input space are basically
associated with their own private set of parameters, e.g., as
in decision trees, nearest-neighbors, Gaussian SVMs, etc. In
a distributed representation, an exponentially large number of
possible subsets of features or hidden units can be activated
in response to a given input. In a single-layer model, each
feature is typically associated with a preferred input direction,
corresponding to a hyperplane in input space, and the code
or representation associated with that input is precisely the
pattern of activation (which features respond to the input,
and how much). This is in contrast with a non-distributed
representation such as the one learned by most clustering
algorithms, e.g., k-means, in which the representation of a
given input vector is a one-hot code identifying which one of
a small number of cluster centroids best represents the input 10.

3.4 Depth and abstraction
Depth is a key aspect to representation learning strategies we
consider in this paper. As we will discuss, deep architectures
are often challenging to train effectively and this has been
the subject of much recent research and progress. However,
despite these challenges, they carry two significant advantages
that motivate our long-term interest in discovering successful
training strategies for deep architectures. These advantages
are: (1) deep architectures promote the re-use of features, and
(2) deep architectures can potentially lead to progressively
more abstract features at higher layers of representations
(more removed from the data).

Feature re-use. The notion of re-use, which explains the
power of distributed representations, is also at the heart of the
theoretical advantages behind deep learning, i.e., constructing
multiple levels of representation or learning a hierarchy of
features. The depth of a circuit is the length of the longest
path from an input node of the circuit to an output node of
the circuit. The crucial property of a deep circuit is that its
number of paths, i.e., ways to re-use different parts, can grow
exponentially with its depth. Formally, one can change the
depth of a given circuit by changing the definition of what
each node can compute, but only by a constant factor. The
typical computations we allow in each node include: weighted
sum, product, artificial neuron model (such as a monotone non-
linearity on top of an affine transformation), computation of a
kernel, or logic gates. Theoretical results clearly show families
of functions where a deep representation can be exponentially
more efficient than one that is insufficiently deep (Håstad,
1986; Håstad and Goldmann, 1991; Bengio et al., 2006a;
Bengio and LeCun, 2007; Bengio and Delalleau, 2011). If
the same family of functions can be represented with fewer

10. As discussed in (Bengio, 2009), things are only slightly better when
allowing continuous-valued membership values, e.g., in ordinary mixture
models (with separate parameters for each mixture component), but the
difference in representational power is still exponential (Montufar and Morton,
2012). The situation may also seem better with a decision tree, where each
given input is associated with a one-hot code over the tree leaves, which
deterministically selects associated ancestors (the path from root to node).
Unfortunately, the number of different regions represented (equal to the
number of leaves of the tree) still only grows linearly with the number of
parameters used to specify it (Bengio and Delalleau, 2011).
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parameters (or more precisely with a smaller VC-dimension),
learning theory would suggest that it can be learned with
fewer examples, yielding improvements in both computational
efficiency (less nodes to visit) and statistical efficiency (less
parameters to learn, and re-use of these parameters over many
different kinds of inputs).

Abstraction and invariance. Deep architectures can lead
to abstract representations because more abstract concepts can
often be constructed in terms of less abstract ones. In some
cases, such as in the convolutional neural network (LeCun
et al., 1998b), we build this abstraction in explicitly via a
pooling mechanism (see section 11.2). More abstract concepts
are generally invariant to most local changes of the input. That
makes the representations that capture these concepts generally
highly non-linear functions of the raw input. This is obviously
true of categorical concepts, where more abstract representa-
tions detect categories that cover more varied phenomena (e.g.
larger manifolds with more wrinkles) and thus they potentially
have greater predictive power. Abstraction can also appear in
high-level continuous-valued attributes that are only sensitive
to some very specific types of changes in the input. Learning
these sorts of invariant features has been a long-standing goal
in pattern recognition.

3.5 Disentangling Factors of Variation
Beyond being distributed and invariant, we would like our rep-
resentations to disentangle the factors of variation. Different
explanatory factors of the data tend to change independently
of each other in the input distribution, and only a few at a time
tend to change when one considers a sequence of consecutive
real-world inputs.

Complex data arise from the rich interaction of many
sources. These factors interact in a complex web that can
complicate AI-related tasks such as object classification. For
example, an image is composed of the interaction between one
or more light sources, the object shapes and the material prop-
erties of the various surfaces present in the image. Shadows
from objects in the scene can fall on each other in complex
patterns, creating the illusion of object boundaries where there
are none and dramatically effect the perceived object shape.
How can we cope with these complex interactions? How can
we disentangle the objects and their shadows? Ultimately,
we believe the approach we adopt for overcoming these
challenges must leverage the data itself, using vast quantities
of unlabeled examples, to learn representations that separate
the various explanatory sources. Doing so should give rise to
a representation significantly more robust to the complex and
richly structured variations extant in natural data sources for
AI-related tasks.

It is important to distinguish between the related but distinct
goals of learning invariant features and learning to disentangle
explanatory factors. The central difference is the preservation
of information. Invariant features, by definition, have reduced
sensitivity in the direction of invariance. This is the goal of
building features that are insensitive to variation in the data
that are uninformative to the task at hand. Unfortunately, it
is often difficult to determine a priori which set of features
and variations will ultimately be relevant to the task at hand.

Further, as is often the case in the context of deep learning
methods, the feature set being trained may be destined to
be used in multiple tasks that may have distinct subsets of
relevant features. Considerations such as these lead us to the
conclusion that the most robust approach to feature learning
is to disentangle as many factors as possible, discarding as
little information about the data as is practical. If some form
of dimensionality reduction is desirable, then we hypothesize
that the local directions of variation least represented in the
training data should be first to be pruned out (as in PCA,
for example, which does it globally instead of around each
example).

3.6 Good criteria for learning representations?
One of the challenges of representation learning that distin-
guishes it from other machine learning tasks such as classi-
fication is the difficulty in establishing a clear objective, or
target for training. In the case of classification, the objective
is (at least conceptually) obvious, we want to minimize the
number of misclassifications on the training dataset. In the
case of representation learning, our objective is far-removed
from the ultimate objective, which is typically learning a
classifier or some other predictor. Our problem is reminiscent
of the credit assignment problem encountered in reinforcement
learning. We have proposed that a good representation is one
that disentangles the underlying factors of variation, but how
do we translate that into appropriate training criteria? Is it even
necessary to do anything but maximize likelihood under a good
model or can we introduce priors such as those enumerated
above (possibly data-dependent ones) that help the representa-
tion better do this disentangling? This question remains clearly
open but is discussed in more detail in Sections 3.5 and 11.4.

4 BUILDING DEEP REPRESENTATIONS
In 2006, a breakthrough in feature learning and deep learning
was initiated by Geoff Hinton and quickly followed up in
the same year (Hinton et al., 2006; Bengio et al., 2007;
Ranzato et al., 2007), and soon after by Lee et al. (2008)
and many more later. It has been extensively reviewed and
discussed in Bengio (2009). A central idea, referred to as
greedy layerwise unsupervised pre-training, was to learn a
hierarchy of features one level at a time, using unsupervised
feature learning to learn a new transformation at each level
to be composed with the previously learned transformations;
essentially, each iteration of unsupervised feature learning adds
one layer of weights to a deep neural network. Finally, the set
of layers could be combined to initialize a deep supervised pre-
dictor, such as a neural network classifier, or a deep generative
model, such as a Deep Boltzmann Machine (Salakhutdinov
and Hinton, 2009).

This paper is mostly about feature learning algorithms
that can be used to form deep architectures. In particular, it
was empirically observed that layerwise stacking of feature
extraction often yielded better representations, e.g., in terms
of classification error (Larochelle et al., 2009; Erhan et al.,
2010b), quality of the samples generated by a probabilistic
model (Salakhutdinov and Hinton, 2009) or in terms of the
invariance properties of the learned features (Goodfellow
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et al., 2009). Whereas this section focuses on the idea of
stacking single-layer models, Section 10 follows up with a
discussion on joint training of all the layers.

After greedy layerwise unsuperivsed pre-training, the re-
sulting deep features can be used either as input to a standard
supervised machine learning predictor (such as an SVM) or as
initialization for a deep supervised neural network (e.g., by ap-
pending a logistic regression layer or purely supervised layers
of a multi-layer neural network). The layerwise procedure can
also be applied in a purely supervised setting, called the greedy
layerwise supervised pre-training (Bengio et al., 2007). For
example, after the first one-hidden-layer MLP is trained, its
output layer is discarded and another one-hidden-layer MLP
can be stacked on top of it, etc. Although results reported
in Bengio et al. (2007) were not as good as for unsupervised
pre-training, they were nonetheless better than without pre-
training at all. Alternatively, the outputs of the previous layer
can be fed as extra inputs for the next layer (in addition to the
raw input), as successfully done in Yu et al. (2010). Another
variant (Seide et al., 2011b) pre-trains in a supervised way all
the previously added layers at each step of the iteration, and
in their experiments this discriminant variant yielded better
results than unsupervised pre-training.

Whereas combining single layers into a supervised model
is straightforward, it is less clear how layers pre-trained by
unsupervised learning should be combined to form a better
unsupervised model. We cover here some of the approaches
to do so, but no clear winner emerges and much work has to
be done to validate existing proposals or improve them.

The first proposal was to stack pre-trained RBMs into a
Deep Belief Network (Hinton et al., 2006) or DBN, where
the top layer is interpreted as an RBM and the lower layers
as a directed sigmoid belief network. However, it is not clear
how to approximate maximum likelihood training to further
optimize this generative model. One option is the wake-sleep
algorithm (Hinton et al., 2006) but more work should be done
to assess the efficiency of this procedure in terms of improving
the generative model.

The second approach that has been put forward is to
combine the RBM parameters into a Deep Boltzmann Machine
(DBM), by basically halving the RBM weights to obtain
the DBM weights (Salakhutdinov and Hinton, 2009). The
DBM can then be trained by approximate maximum likelihood
as discussed in more details later (Section 10.2). This joint
training has brought substantial improvements, both in terms
of likelihood and in terms of classification performance of
the resulting deep feature learner (Salakhutdinov and Hinton,
2009).

Another early approach was to stack RBMs or auto-
encoders into a deep auto-encoder (Hinton and Salakhutdi-
nov, 2006). If we have a series of encoder-decoder pairs
(f (i)(·), g(i)(·)), then the overall encoder is the composition of
the encoders, f (N)(. . . f (2)(f (1)(·))), and the overall decoder
is its “transpose” (often with transposed weight matrices as
well), g(1)(g(2)(. . . f (N)(·))). The deep auto-encoder (or its
regularized version, as discussed in Section 7.2) can then
be jointly trained, with all the parameters optimized with
respect to a global reconstruction error criterion. More work

on this avenue clearly needs to be done, and it was probably
avoided by fear of the challenges in training deep feedfor-
ward networks, discussed in the Section 10 along with very
encouraging recent results.

Yet another recently proposed approach to training deep
architectures (Ngiam et al., 2011) is to consider the iterative
construction of a free energy function (i.e., with no explicit
latent variables, except possibly for a top-level layer of hidden
units) for a deep architecture as the composition of transforma-
tions associated with lower layers, followed by top-level hid-
den units. The question is then how to train a model defined by
an arbitrary parametrized (free) energy function. Ngiam et al.
(2011) have used Hybrid Monte Carlo (Neal, 1993), but other
options include contrastive divergence (Hinton, 1999; Hinton
et al., 2006), score matching (Hyvärinen, 2005; Hyvärinen,
2008), denoising score matching (Kingma and LeCun, 2010;
Vincent, 2011), ratio-matching (Hyvärinen, 2007) and noise-
contrastive estimation (Gutmann and Hyvarinen, 2010).

5 SINGLE-LAYER LEARNING MODULES
Within the community of researchers interested in representa-
tion learning, there has developed two broad parallel lines of
inquiry: one rooted in probabilistic graphical models and one
rooted in neural networks. Fundamentally, the difference be-
tween these two paradigms is whether the layered architecture
of a deep learning model is to be interpreted as describing a
probabilistic graphical model or as describing a computation
graph. In short, are hidden units considered latent random
variables or as computational nodes?

To date, the dichotomy between these two paradigms has
remained in the background, perhaps because they appear to
have more characteristics in common than separating them.
We suggest that this is likely a function of the fact that
much recent progress in both of these areas has focused
on single-layer greedy learning modules and the similarities
between the types of single-layer models that have been
explored: mainly, the restricted Boltzmann machine (RBM)
on the probabilistic side, and the auto-encoder variants on the
neural network side. Indeed, as shown by one of us (Vincent,
2011) and others (Swersky et al., 2011), in the case of
the restricted Boltzmann machine, training the model via
an inductive principle known as score matching (Hyvärinen,
2005) (to be discussed in sec. 6.4.3) is essentially identical
to applying a regularized reconstruction objective to an auto-
encoder. Another strong link between pairs of models on
both sides of this divide is when the computational graph for
computing representation in the neural network model corre-
sponds exactly to the computational graph that corresponds to
inference in the probabilistic model, and this happens to also
correspond to the structure of graphical model itself (e.g., as
in the RBM).

The connection between these two paradigms becomes more
tenuous when we consider deeper models where, in the case
of a probabilistic model, exact inference typically becomes
intractable. In the case of deep models, the computational
graph diverges from the structure of the model. For example,
in the case of a deep Boltzmann machine, unrolling variational
(approximate) inference into a computational graph results in
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a recurrent graph structure. We have performed preliminary
exploration (Savard, 2011) of deterministic variants of deep
auto-encoders whose computational graph is similar to that of
a deep Boltzmann machine (in fact very close to the mean-
field variational approximations associated with the Boltzmann
machine), and that is one interesting intermediate point to ex-
plore (between the deterministic approaches and the graphical
model approaches).

In the next few sections we will review the major de-
velopments in single-layer training modules used to support
feature learning and particularly deep learning. We divide these
sections between (Section 6) the probabilistic models, with
inference and training schemes that directly parametrize the
generative – or decoding – pathway and (Section 7) the typ-
ically neural network-based models that directly parametrize
the encoding pathway. Interestingly, some models, like Pre-
dictive Sparse Decomposition (PSD) (Kavukcuoglu et al.,
2008) inherit both properties, and will also be discussed (Sec-
tion 7.2.4). We then present a different view of representation
learning, based on the associated geometry and the manifold
assumption, in Section 8.

First, let us consider an unsupervised single-layer represen-
tation learning algorithm spaning all three views: probabilistic,
auto-encoder, and manifold learning.

Principal Components Analysis
We will use probably the oldest feature extraction algorithm,

principal components analysis (PCA), to illustrate the proba-
bilistic, auto-encoder and manifold views of representation-
learning. PCA learns a linear transformation h = f(x) =
WTx + b of input x ∈ Rdx , where the columns of dx × dh
matrix W form an orthogonal basis for the dh orthogonal
directions of greatest variance in the training data. The result
is dh features (the components of representation h) that
are decorrelated. The three interpretations of PCA are the
following: a) it is related to probabilistic models (Section 6)
such as probabilistic PCA, factor analysis and the traditional
multivariate Gaussian distribution (the leading eigenvectors of
the covariance matrix are the principal components); b) the
representation it learns is essentially the same as that learned
by a basic linear auto-encoder (Section 7.2); and c) it can be
viewed as a simple linear form of linear manifold learning
(Section 8), i.e., characterizing a lower-dimensional region
in input space near which the data density is peaked. Thus,
PCA may be in the back of the reader’s mind as a common
thread relating these various viewpoints. Unfortunately the
expressive power of linear features is very limited: they cannot
be stacked to form deeper, more abstract representations since
the composition of linear operations yields another linear
operation. Here, we focus on recent algorithms that have
been developed to extract non-linear features, which can be
stacked in the construction of deep networks, although some
authors simply insert a non-linearity between learned single-
layer linear projections (Le et al., 2011c; Chen et al., 2012).

Another rich family of feature extraction techniques that this
review does not cover in any detail due to space constraints is
Independent Component Analysis or ICA (Jutten and Herault,
1991; Bell and Sejnowski, 1997). Instead, we refer the reader
to Hyvärinen et al. (2001a); Hyvärinen et al. (2009). Note that,

while in the simplest case (complete, noise-free) ICA yields
linear features, in the more general case it can be equated
with a linear generative model with non-Gaussian independent
latent variables, similar to sparse coding (section 6.1.1), which
result in non-linear features. Therefore, ICA and its variants
like Independent and Topographic ICA (Hyvärinen et al.,
2001b) can and have been used to build deep networks (Le
et al., 2010, 2011c): see section 11.2. The notion of obtaining
independent components also appears similar to our stated
goal of disentangling underlying explanatory factors through
deep networks. However, for complex real-world distributions,
it is doubtful that the relationship between truly independent
underlying factors and the observed high-dimensional data can
be adequately characterized by a linear transformation.

6 PROBABILISTIC MODELS
From the probabilistic modeling perspective, the question of
feature learning can be interpreted as an attempt to recover
a parsimonious set of latent random variables that describe
a distribution over the observed data. We can express as
p(x, h) a probabilistic model over the joint space of the latent
variables, h, and observed data or visible variables x. Feature
values are conceived as the result of an inference process to
determine the probability distribution of the latent variables
given the data, i.e. p(h | x), often referred to as the posterior
probability. Learning is conceived in term of estimating a set
of model parameters that (locally) maximizes the regularized
likelihood of the training data. The probabilistic graphical
model formalism gives us two possible modeling paradigms
in which we can consider the question of inferring latent
variables, directed and undirected graphical models, which
differ in their parametrization of the joint distribution p(x, h),
yielding major impact on the nature and computational costs
of both inference and learning.

6.1 Directed Graphical Models
Directed latent factor models separately parametrize the con-
ditional likelihood p(x | h) and the prior p(h) to construct
the joint distribution, p(x, h) = p(x | h)p(h). Examples of
this decomposition include: Principal Components Analysis
(PCA) (Roweis, 1997; Tipping and Bishop, 1999), sparse
coding (Olshausen and Field, 1996), sigmoid belief net-
works (Neal, 1992) and the newly introduced spike-and-slab
sparse coding model (Goodfellow et al., 2011).

6.1.1 Explaining Away
Directed models often leads to one important property: ex-
plaining away, i.e., a priori independent causes of an event can
become non-independent given the observation of the event.
Latent factor models can generally be interpreted as latent
cause models, where the h activations cause the observed x.
This renders the a priori independent h to be non-independent.
As a consequence, recovering the posterior distribution of h,
p(h | x) (which we use as a basis for feature representation),
is often computationally challenging and can be entirely
intractable, especially when h is discrete.

A classic example that illustrates the phenomenon is to
imagine you are on vacation away from home and you receive
a phone call from the security system company, telling you that
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the alarm has been activated. You begin worrying your home
has been burglarized, but then you hear on the radio that a
minor earthquake has been reported in the area of your home.
If you happen to know from prior experience that earthquakes
sometimes cause your home alarm system to activate, then
suddenly you relax, confident that your home has very likely
not been burglarized.

The example illustrates how the alarm activation rendered
two otherwise entirely independent causes, burglarized and
earthquake, to become dependent – in this case, the depen-
dency is one of mutual exclusivity. Since both burglarized
and earthquake are very rare events and both can cause
alarm activation, the observation of one explains away the
other. Despite the computational obstacles we face when
attempting to recover the posterior over h, explaining away
promises to provide a parsimonious p(h | x), which can
be an extremely useful characteristic of a feature encoding
scheme. If one thinks of a representation as being composed
of various feature detectors and estimated attributes of the
observed input, it is useful to allow the different features to
compete and collaborate with each other to explain the input.
This is naturally achieved with directed graphical models, but
can also be achieved with undirected models (see Section 6.2)
such as Boltzmann machines if there are lateral connections
between the corresponding units or corresponding interaction
terms in the energy function that defines the probability model.

Probabilistic Interpretation of PCA. PCA can be given
a natural probabilistic interpretation (Roweis, 1997; Tipping
and Bishop, 1999) as factor analysis:

p(h) = N (h; 0, σ2
hI)

p(x | h) = N (x;Wh+ µx, σ
2
xI), (1)

where x ∈ Rdx , h ∈ Rdh , N (v;µ,Σ) is the multivariate
normal density of v with mean µ and covariance Σ, and
columns of W span the same space as leading dh principal
components, but are not constrained to be orthonormal.

Sparse Coding. Like PCA, sparse coding has both a proba-
bilistic and non-probabilistic interpretation. Sparse coding also
relates a latent representation h (either a vector of random
variables or a feature vector, depending on the interpretation)
to the data x through a linear mapping W , which we refer
to as the dictionary. The difference between sparse coding
and PCA is that sparse coding includes a penalty to ensure a
sparse activation of h is used to encode each input x. From
a non-probabilistic perspective, sparse coding can be seen as
recovering the code or feature vector associated with a new
input x via:

h∗ = f(x) = argmin
h
‖x−Wh‖22 + λ‖h‖1, (2)

Learning the dictionary W can be accomplished by optimizing
the following training criterion with respect to W :

JSC =
∑
t

‖x(t) −Wh∗(t)‖22, (3)

where x(t) is the t-th example and h∗(t) is the corresponding
sparse code determined by Eq. 2. W is usually constrained to
have unit-norm columns (because one can arbitrarily exchange
scaling of column i with scaling of h(t)i , such a constraint is
necessary for the L1 penalty to have any effect).

The probabilistic interpretation of sparse coding differs from
that of PCA, in that instead of a Gaussian prior on the latent
random variable h, we use a sparsity inducing Laplace prior
(corresponding to an L1 penalty):

p(h) =

dh∏
i

λ

2
exp(−λ|hi|)

p(x | h) = N (x;Wh+ µx, σ
2
xI). (4)

In the case of sparse coding, because we will seek a sparse
representation (i.e., one with many features set to exactly zero),
we will be interested in recovering the MAP (maximum a
posteriori value of h: i.e. h∗ = argmaxh p(h | x) rather than
its expected value E [h|x]. Under this interpretation, dictionary
learning proceeds as maximizing the likelihood of the data
given these MAP values of h∗: argmaxW

∏
t p(x

(t) | h∗(t))
subject to the norm constraint on W . Note that this pa-
rameter learning scheme, subject to the MAP values of
the latent h, is not standard practice in the probabilistic
graphical model literature. Typically the likelihood of the
data p(x) =

∑
h p(x | h)p(h) is maximized directly. In the

presence of latent variables, expectation maximization is em-
ployed where the parameters are optimized with respect to
the marginal likelihood, i.e., summing or integrating the joint
log-likelihood over the all values of the latent variables under
their posterior P (h | x), rather than considering only the
single MAP value of h. The theoretical properties of this
form of parameter learning are not yet well understood but
seem to work well in practice (e.g. k-Means vs Gaussian
mixture models and Viterbi training for HMMs). Note also
that the interpretation of sparse coding as a MAP estimation
can be questioned (Gribonval, 2011), because even though the
interpretation of the L1 penalty as a log-prior is a possible
interpretation, there can be other Bayesian interpretations
compatible with the training criterion.

Sparse coding is an excellent example of the power of
explaining away. Even with a very overcomplete dictionary11,
the MAP inference process used in sparse coding to find h∗

can pick out the most appropriate bases and zero the others,
despite them having a high degree of correlation with the input.
This property arises naturally in directed graphical models
such as sparse coding and is entirely owing to the explaining
away effect. It is not seen in commonly used undirected prob-
abilistic models such as the RBM, nor is it seen in parametric
feature encoding methods such as auto-encoders. The trade-
off is that, compared to methods such as RBMs and auto-
encoders, inference in sparse coding involves an extra inner-
loop of optimization to find h∗ with a corresponding increase
in the computational cost of feature extraction. Compared
to auto-encoders and RBMs, the code in sparse coding is a
free variable for each example, and in that sense the implicit
encoder is non-parametric.

One might expect that the parsimony of the sparse coding
representation and its explaining away effect would be advan-
tageous and indeed it seems to be the case. Coates and Ng
(2011a) demonstrated on the CIFAR-10 object classification
task (Krizhevsky and Hinton, 2009) with a patch-base feature
extraction pipeline, that in the regime with few (< 1000)

11. Overcomplete: with more dimensions of h than dimensions of x.
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labeled training examples per class, the sparse coding repre-
sentation significantly outperformed other highly competitive
encoding schemes. Possibly because of these properties, and
because of the very computationally efficient algorithms that
have been proposed for it (in comparison with the general
case of inference in the presence of explaining away), sparse
coding enjoys considerable popularity as a feature learning and
encoding paradigm. There are numerous examples of its suc-
cessful application as a feature representation scheme, includ-
ing natural image modeling (Raina et al., 2007; Kavukcuoglu
et al., 2008; Coates and Ng, 2011a; Yu et al., 2011), audio
classification (Grosse et al., 2007), NLP (Bagnell and Bradley,
2009), as well as being a very successful model of the early
visual cortex (Olshausen and Field, 1996). Sparsity criteria can
also be generalized successfully to yield groups of features that
prefer to all be zero, but if one or a few of them are active then
the penalty for activating others in the group is small. Different
group sparsity patterns can incorporate different forms of prior
knowledge (Kavukcuoglu et al., 2009; Jenatton et al., 2009;
Bach et al., 2011; Gregor et al., 2011).

Spike-and-Slab Sparse Coding. Spike-and-slab sparse cod-
ing (S3C) is one example of a promising variation on sparse
coding for feature learning (Goodfellow et al., 2012). The
S3C model possesses a set of latent binary spike variables
together with a a set of latent real-valued slab variables. The
activation of the spike variables dictates the sparsity pattern.
S3C has been applied to the CIFAR-10 and CIFAR-100 object
classification tasks (Krizhevsky and Hinton, 2009), and shows
the same pattern as sparse coding of superior performance in
the regime of relatively few (< 1000) labeled examples per
class (Goodfellow et al., 2012). In fact, in both the CIFAR-
100 dataset (with 500 examples per class) and the CIFAR-
10 dataset (when the number of examples is reduced to a
similar range), the S3C representation actually outperforms
sparse coding representations. This advantage was revealed
clearly with S3C winning the NIPS’2011 Transfer Learning
Challenge (Goodfellow et al., 2011).

6.2 Undirected Graphical Models
Undirected graphical models, also called Markov random
fields (MRFs), parametrize the joint p(x, h) through a product
of unnormalized non-negative clique potentials:

p(x, h) =
1

Zθ

∏
i

ψi(x)
∏
j

ηj(h)
∏
k

νk(x, h) (5)

where ψi(x), ηj(h) and νk(x, h) are the clique potentials de-
scribing the interactions between the visible elements, between
the hidden variables, and those interaction between the visible
and hidden variables respectively. The partition function Zθ
ensures that the distribution is normalized. Within the context
of unsupervised feature learning, we generally see a particular
form of Markov random field called a Boltzmann distribution
with clique potentials constrained to be positive:

p(x, h) =
1

Zθ
exp (−Eθ(x, h)) , (6)

where Eθ(x, h) is the energy function and contains the inter-
actions described by the MRF clique potentials and θ are the
model parameters that characterize these interactions.

The Boltzmann machine was originally defined as a network
of symmetrically-coupled binary random variables or units.

These stochastic units can be divided into two groups: (1) the
visible units x ∈ {0, 1}dx that represent the data, and (2) the
hidden or latent units h ∈ {0, 1}dh that mediate dependencies
between the visible units through their mutual interactions. The
pattern of interaction is specified through the energy function:

EBM
θ (x, h) = −1

2
xTUx− 1

2
hTV h− xTWh− bTx− dTh, (7)

where θ = {U, V,W, b, d} are the model parameters which
respectively encode the visible-to-visible interactions, the
hidden-to-hidden interactions, the visible-to-hidden interac-
tions, the visible self-connections, and the hidden self-
connections (called biases). To avoid over-parametrization, the
diagonals of U and V are set to zero.

The Boltzmann machine energy function specifies the prob-
ability distribution over [x, h], via the Boltzmann distribution,
Eq. 6, with the partition function Zθ given by:

Zθ =

x1=1∑
x1=0

· · ·
xdx=1∑
xdx=0

h1=1∑
h1=0

· · ·
hdh

=1∑
hdh

=0

exp
(
−EBM

θ (x, h; θ)
)
. (8)

This joint probability distribution gives rise to the set of
conditional distributions of the form:

P (hi | x, h\i) = sigmoid

∑
j

Wjixj +
∑
i′ 6=i

Vii′hi′ + di

 (9)

P (xj | h, x\j) = sigmoid

∑
i

Wjixj +
∑
j′ 6=j

Ujj′xj′ + bj

 .

(10)

In general, inference in the Boltzmann machine is intractable.
For example, computing the conditional probability of hi given
the visibles, P (hi | x), requires marginalizing over the rest of
the hiddens, which implies evaluating a sum with 2dh−1 terms:

P (hi | x) =
h1=1∑
h1=0

· · ·
hi−1=1∑
hi−1=0

hi+1=1∑
hi+1=0

· · ·
hdh

=1∑
hdh

=0

P (h | x) (11)

However with some judicious choices in the pattern of inter-
actions between the visible and hidden units, more tractable
subsets of the model family are possible, as we discuss next.

Restricted Boltzmann Machines (RBMs). The RBM
is likely the most popular subclass of Boltzmann ma-
chine (Smolensky, 1986). It is defined by restricting the
interactions in the Boltzmann energy function, in Eq. 7, to
only those between h and x, i.e. ERBM

θ is EBM
θ with U = 0

and V = 0. As such, the RBM can be said to form a bipartite
graph with the visibles and the hiddens forming two layers
of vertices in the graph (and no connection between units of
the same layer). With this restriction, the RBM possesses the
useful property that the conditional distribution over the hidden
units factorizes given the visibles:

P (h | x) =
∏
i P (hi | x)

P (hi = 1 | x) = sigmoid
(∑

jWjixj + di
)
. (12)

Likewise, the conditional distribution over the visible units
given the hiddens also factorizes:

P (x | h) =
∏
j

P (xj | h)

P (xj = 1 | h) = sigmoid

(∑
i

Wjihi + bj

)
. (13)
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This makes inferences readily tractable in RBMs. For exam-
ple, the RBM feature representation is taken to be the set of
posterior marginals P (hi | x), which, given the conditional
independence described in Eq. 12, are immediately available.
Note that this is in stark contrast to the situation with popular
directed graphical models for unsupervised feature extraction,
where computing the posterior probability is intractable.

Importantly, the tractability of the RBM does not extend
to its partition function, which still involves summing an
exponential number of terms. It does imply however that we
can limit the number of terms to min{2dx , 2dh}. Usually this is
still an unmanageable number of terms and therefore we must
resort to approximate methods to deal with its estimation.

It is difficult to overstate the impact the RBM has had to
the fields of unsupervised feature learning and deep learning.
It has been used in a truly impressive variety of applica-
tions, including fMRI image classification (Schmah et al.,
2009), motion and spatial transformations (Taylor and Hinton,
2009; Memisevic and Hinton, 2010), collaborative filtering
(Salakhutdinov et al., 2007) and natural image modeling
(Ranzato and Hinton, 2010; Courville et al., 2011b).

6.3 Generalizations of the RBM to Real-valued data
Important progress has been made in the last few years in
defining generalizations of the RBM that better capture real-
valued data, in particular real-valued image data, by better
modeling the conditional covariance of the input pixels. The
standard RBM, as discussed above, is defined with both binary
visible variables v ∈ {0, 1} and binary latent variables h ∈
{0, 1}. The tractability of inference and learning in the RBM
has inspired many authors to extend it, via modifications of its
energy function, to model other kinds of data distributions. In
particular, there has been multiple attempts to develop RBM-
type models of real-valued data, where x ∈ Rdx . The most
straightforward approach to modeling real-valued observations
within the RBM framework is the so-called Gaussian RBM
(GRBM) where the only change in the RBM energy function
is to the visible units biases, by adding a bias term that is
quadratic in the visible units x. While it probably remains
the most popular way to model real-valued data within the
RBM framework, Ranzato and Hinton (2010) suggest that the
GRBM has proved to be a somewhat unsatisfactory model of
natural images. The trained features typically do not represent
sharp edges that occur at object boundaries and lead to latent
representations that are not particularly useful features for
classification tasks. Ranzato and Hinton (2010) argue that
the failure of the GRBM to adequately capture the statistical
structure of natural images stems from the exclusive use of the
model capacity to capture the conditional mean at the expense
of the conditional covariance. Natural images, they argue, are
chiefly characterized by the covariance of the pixel values,
not by their absolute values. This point is supported by the
common use of preprocessing methods that standardize the
global scaling of the pixel values across images in a dataset
or across the pixel values within each image.

These kinds of concerns about the ability of the GRBM
to model natural image data has lead to the development of
alternative RBM-based models that each attempt to take on this

objective of better modeling non-diagonal conditional covari-
ances. (Ranzato and Hinton, 2010) introduced the mean and
covariance RBM (mcRBM). Like the GRBM, the mcRBM is a
2-layer Boltzmann machine that explicitly models the visible
units as Gaussian distributed quantities. However unlike the
GRBM, the mcRBM uses its hidden layer to independently
parametrize both the mean and covariance of the data through
two sets of hidden units. The mcRBM is a combination of the
covariance RBM (cRBM) (Ranzato et al., 2010a), that models
the conditional covariance, with the GRBM that captures the
conditional mean. While the GRBM has shown considerable
potential as the basis of a highly successful phoneme recogni-
tion system (Dahl et al., 2010), it seems that due to difficulties
in training the mcRBM, the model has been largely superseded
by the mPoT model. The mPoT model (mean-product of
Student’s T-distributions model) (Ranzato et al., 2010b) is
a combination of the GRBM and the product of Student’s T-
distributions model (Welling et al., 2003). It is an energy-based
model where the conditional distribution over the visible units
conditioned on the hidden variables is a multivariate Gaussian
(non-diagonal covariance) and the complementary conditional
distribution over the hidden variables given the visibles are a
set of independent Gamma distributions.

The PoT model has recently been generalized to the mPoT
model (Ranzato et al., 2010b) to include nonzero Gaussian
means by the addition of GRBM-like hidden units, similarly to
how the mcRBM generalizes the cRBM. The mPoT model has
been used to synthesize large-scale natural images (Ranzato
et al., 2010b) that show large-scale features and shadowing
structure. It has been used to model natural textures (Kivinen
and Williams, 2012) in a tiled-convolution configuration (see
section 11.2).

Another recently introduced RBM-based model with the
objective of having the hidden units encode both the mean
and covariance information is the spike-and-slab Restricted
Boltzmann Machine (ssRBM) (Courville et al., 2011a,b).
The ssRBM is defined as having both a real-valued “slab”
variable and a binary “spike” variable associated with each
unit in the hidden layer. The ssRBM has been demonstrated
as a feature learning and extraction scheme in the context
of CIFAR-10 object classification (Krizhevsky and Hinton,
2009) from natural images and has performed well in the
role (Courville et al., 2011a,b). When trained convolutionally
(see Section 11.2) on full CIFAR-10 natural images, the model
demonstrated the ability to generate natural image samples
that seem to capture the broad statistical structure of natural
images better than previous parametric generative models, as
illustrated with the samples of Figure 2.

The mcRBM, mPoT and ssRBM each set out to model
real-valued data such that the hidden units encode not only
the conditional mean of the data but also its conditional
covariance. Other than differences in the training schemes, the
most significant difference between these models is how they
encode their conditional covariance. While the mcRBM and
the mPoT use the activation of the hidden units to enforce con-
straints on the covariance of x, the ssRBM uses the hidden unit
to pinch the precision matrix along the direction specified by
the corresponding weight vector. These two ways of modeling
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Fig. 2. (Top) Samples from convolutionally trained µ-ssRBM
from Courville et al. (2011b). (Bottom) Images in CIFAR-10 train-
ing set closest (L2 distance with contrast normalized training
images) to corresponding model samples on top. The model
does not appear to be overfitting particular training examples.

conditional covariance diverge when the dimensionality of the
hidden layer is significantly different from that of the input.
In the overcomplete setting, sparse activation with the ssRBM
parametrization permits variance only in the select directions
of the sparsely activated hidden units. This is a property the
ssRBM shares with sparse coding models (Olshausen and
Field, 1996; Grosse et al., 2007). On the other hand, in
the case of the mPoT or mcRBM, an overcomplete set of
constraints on the covariance implies that capturing arbitrary
covariance along a particular direction of the input requires
decreasing potentially all constraints with positive projection
in that direction. This perspective would suggest that the mPoT
and mcRBM do not appear to be well suited to provide a sparse
representation in the overcomplete setting.

6.4 RBM parameter estimation
Many of the RBM training methods we discuss here are ap-
plicable to more general undirected graphical models, but are
particularly practical in the RBM setting. Freund and Haussler
(1994) proposed a learning algorithm for harmoniums (RBMs)
based on projection pursuit. Contrastive Divergence (Hinton,
1999; Hinton et al., 2006) has been used most often to train
RBMs, and many recent papers use Stochastic Maximum
Likelihood (Younes, 1999; Tieleman, 2008).

As discussed in Sec. 6.1, in training probabilistic models
parameters are typically adapted in order to maximize the like-
lihood of the training data (or equivalently the log-likelihood,
or its penalized version, which adds a regularization term).
With T training examples, the log likelihood is given by:

T∑
t=1

logP (x(t); θ) =

T∑
t=1

log
∑

h∈{0,1}dh

P (x(t), h; θ). (14)

Gradient-based optimization requires its gradient, which for

Boltzmann machines, is given by:
∂

∂θi

T∑
t=1

log p(x(t)) = −
T∑
t=1

Ep(h|x(t))

[
∂

∂θi
EBM
θ (x(t), h)

]
+

T∑
t=1

Ep(x,h)
[
∂

∂θi
EBM
θ (x, h)

]
, (15)

where we have the expectations with respect to p(h(t) | x(t))
in the “clamped” condition (also called the positive phase),
and over the full joint p(x, h) in the “unclamped” condition
(also called the negative phase). Intuitively, the gradient acts
to locally move the model distribution (the negative phase
distribution) toward the data distribution (positive phase dis-
tribution), by pushing down the energy of (h, x(t)) pairs (for
h ∼ P (h|x(t))) while pushing up the energy of (h, x) pairs
(for (h, x) ∼ P (h, x)) until the two forces are in equilibrium,
at which point the sufficient statistics (gradient of the energy
function) have equal expectations with x sampled from the
training distribution or with x sampled from the model.

The RBM conditional independence properties imply that
the expectation in the positive phase of Eq. 15 is tractable.
The negative phase term – arising from the partition func-
tion’s contribution to the log-likelihood gradient – is more
problematic because the computation of the expectation over
the joint is not tractable. The various ways of dealing with the
partition function’s contribution to the gradient have brought
about a number of different training algorithms, many trying
to approximate the log-likelihood gradient.

To approximate the expectation of the joint distribution in
the negative phase contribution to the gradient, it is natural to
again consider exploiting the conditional independence of the
RBM in order to specify a Monte Carlo approximation of the
expectation over the joint:

Ep(x,h)
[
∂

∂θi
ERBM
θ (x, h)

]
≈ 1

L

L∑
l=1

∂

∂θi
ERBM
θ (x̃(l), h̃(l)), (16)

with the samples (x̃(l), h̃(l)) drawn by a block Gibbs MCMC
(Markov chain Monte Carlo) sampling procedure:

x̃(l) ∼ P (x | h̃(l−1))

h̃(l) ∼ P (h | x̃(l)).

Naively, for each gradient update step, one would start a
Gibbs sampling chain, wait until the chain converges to the
equilibrium distribution and then draw a sufficient number of
samples to approximate the expected gradient with respect
to the model (joint) distribution in Eq. 16. Then restart the
process for the next step of approximate gradient ascent on
the log-likelihood. This procedure has the obvious flaw that
waiting for the Gibbs chain to “burn-in” and reach equilibrium
anew for each gradient update cannot form the basis of a prac-
tical training algorithm. Contrastive Divergence (Hinton, 1999;
Hinton et al., 2006), Stochastic Maximum Likelihood (Younes,
1999; Tieleman, 2008) and fast-weights persistent contrastive
divergence or FPCD (Tieleman and Hinton, 2009) are all ways
to avoid or reduce the need for burn-in.

6.4.1 Contrastive Divergence
Contrastive divergence (CD) estimation (Hinton, 1999; Hinton
et al., 2006) estimates the negative phase expectation (Eq. 15)
with a very short Gibbs chain (often just one step) initialized
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at the training data used in the positive phase. This reduces
the variance of the gradient estimator and still moves in a
direction that pulls the negative chain samples towards the as-
sociated positive chain samples. Much has been written about
the properties and alternative interpretations of CD and its
similarity to auto-encoder training, e.g. Carreira-Perpiñan and
Hinton (2005); Yuille (2005); Bengio and Delalleau (2009);
Sutskever and Tieleman (2010).

6.4.2 Stochastic Maximum Likelihood
The Stochastic Maximum Likelihood (SML) algorithm (also
known as persistent contrastive divergence or PCD) (Younes,
1999; Tieleman, 2008) is an alternative way to sidestep an
extended burn-in of the negative phase Gibbs sampler. At each
gradient update, rather than initializing the Gibbs chain at the
positive phase sample as in CD, SML initializes the chain at
the last state of the chain used for the previous update. In
other words, SML uses a continually running Gibbs chain (or
often a number of Gibbs chains run in parallel) from which
samples are drawn to estimate the negative phase expectation.
Despite the model parameters changing between updates, these
changes should be small enough that only a few steps of Gibbs
(in practice, often one step is used) are required to maintain
samples from the equilibrium distribution of the Gibbs chain,
i.e. the model distribution.

A troublesome aspect of SML is that it relies on the Gibbs
chain to mix well (especially between modes) for learning to
succeed. Typically, as learning progresses and the weights of
the RBM grow, the ergodicity of the Gibbs sample begins to
break down12. If the learning rate ε associated with gradient
ascent θ ← θ + εĝ (with E[ĝ] ≈ ∂ log pθ(x)

∂θ ) is not reduced
to compensate, then the Gibbs sampler will diverge from the
model distribution and learning will fail. Desjardins et al.
(2010); Cho et al. (2010); Salakhutdinov (2010b,a) have all
considered various forms of tempered transitions to address
the failure of Gibbs chain mixing, and convincing solutions
have not yet been clearly demonstrated. A recently introduced
promising avenue relies on depth itself, showing that mixing
between modes is much easier on deeper layers (Bengio et al.,
2013) (Sec.9.4).

Tieleman and Hinton (2009) have proposed quite a dif-
ferent approach to addressing potential mixing problems of
SML with their fast-weights persistent contrastive divergence
(FPCD), and it has also been exploited to train Deep Boltz-
mann Machines (Salakhutdinov, 2010a) and construct a pure
sampling algorithm for RBMs (Breuleux et al., 2011). FPCD
builds on the surprising but robust tendency of Gibbs chains
to mix better during SML learning than when the model
parameters are fixed. The phenomenon is rooted in the form of
the likelihood gradient itself (Eq. 15). The samples drawn from
the SML Gibbs chain are used in the negative phase of the
gradient, which implies that the learning update will slightly
increase the energy (decrease the probability) of those samples,
making the region in the neighborhood of those samples

12. When weights become large, the estimated distribution is more peaky,
and the chain takes very long time to mix, to move from mode to mode, so
that practically the gradient estimator can be very poor. This is a serious
chicken-and-egg problem because if sampling is not effective, nor is the
training procedure, which may seem to stall, and yields even larger weights.

less likely to be resampled and therefore making it more
likely that the samples will move somewhere else (typically
going near another mode). Rather than drawing samples from
the distribution of the current model (with parameters θ),
FPCD exaggerates this effect by drawing samples from a local
perturbation of the model with parameters θ∗ and an update

θ∗t+1 = (1− η)θt+1 + ηθ∗t + ε∗
∂

∂θi

(
T∑
t=1

log p(x(t))

)
, (17)

where ε∗ is the relatively large fast-weight learning rate
(ε∗ > ε) and 0 < η < 1 (but near 1) is a forgetting factor
that keeps the perturbed model close to the current model.
Unlike tempering, FPCD does not converge to the model
distribution as ε and ε∗ go to 0, and further work is necessary
to characterize the nature of its approximation to the model
distribution. Nevertheless, FPCD is a popular and apparently
effective means of drawing approximate samples from the
model distribution that faithfully represent its diversity, at the
price of sometimes generating spurious samples in between
two modes (because the fast weights roughly correspond to a
smoothed view of the current model’s energy function). It has
been applied in a variety of applications (Tieleman and Hinton,
2009; Ranzato et al., 2011; Kivinen and Williams, 2012) and
it has been transformed into a sampling algorithm (Breuleux
et al., 2011) that also shares this fast mixing property with
herding (Welling, 2009), for the same reason, i.e., introducing
negative correlations between consecutive samples of the
chain in order to promote faster mixing.

6.4.3 Pseudolikelihood, Ratio-matching and More
While CD, SML and FPCD are by far the most popular meth-
ods for training RBMs and RBM-based models, all of these
methods are perhaps most naturally described as offering dif-
ferent approximations to maximum likelihood training. There
exist other inductive principles that are alternatives to maxi-
mum likelihood that can also be used to train RBMs. In partic-
ular, these include pseudo-likelihood (Besag, 1975) and ratio-
matching (Hyvärinen, 2007). Both of these inductive principles
attempt to avoid explicitly dealing with the partition function,
and their asymptotic efficiency has been analyzed (Marlin and
de Freitas, 2011). Pseudo-likelihood seeks to maximize the
product of all one-dimensional conditional distributions of the
form P (xd|x\d), while ratio-matching can be interpreted as
an extension of score matching (Hyvärinen, 2005) to discrete
data types. Both methods amount to weighted differences of
the gradient of the RBM free energy13 evaluated at a data
point and at neighboring points. One potential drawback of
these methods is that depending on the parametrization of
the energy function, their computational requirements may
scale up to O(nd) worse than CD, SML, FPCD, or denoising
score matching (Kingma and LeCun, 2010; Vincent, 2011),
discussed below. Marlin et al. (2010) empirically compared all
of these methods (except denoising score matching) on a range
of classification, reconstruction and density modeling tasks and
found that, in general, SML provided the best combination of
overall performance and computational tractability. However,
in a later study, the same authors (Swersky et al., 2011)

13. The free energy F(x; θ) is the energy associated with the data marginal
probability, F(x; θ) = − logP (x)− logZθ and is tractable for the RBM.
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found denoising score matching to be a competitive inductive
principle both in terms of classification performance (with
respect to SML) and in terms of computational efficiency (with
respect to analytically obtained score matching). Denoising
score matching is a special case of the denoising auto-encoder
training criterion (Section 7.2.2) when the reconstruction error
residual equals a gradient, i.e., the score function associated
with an energy function, as shown in (Vincent, 2011).

In the spirit of the Boltzmann machine gradient (Eq. 15)
several approaches have been proposed to train energy-based
models. One is noise-contrastive estimation (Gutmann and Hy-
varinen, 2010), in which the training criterion is transformed
into a probabilistic classification problem: distinguish between
(positive) training examples and (negative) noise samples
generated by a broad distribution (such as the Gaussian).
Another family of approaches, more in the spirit of Contrastive
Divergence, relies on distinguishing positive examples (of
the training distribution) and negative examples obtained by
perturbations of the positive examples (Collobert and Weston,
2008; Bordes et al., 2012; Weston et al., 2010).

7 DIRECTLY LEARNING A PARAMETRIC MAP
FROM INPUT TO REPRESENTATION

Within the framework of probabilistic models adopted in
Section 6, the learned representation is always associated with
latent variables, specifically with their posterior distribution
given an observed input x. Unfortunately, this posterior dis-
tribution tends to become very complicated and intractable if
the model has more than a couple of interconnected layers,
whether in the directed or undirected graphical model frame-
works. It then becomes necessary to resort to sampling or
approximate inference techniques, and to pay the associated
computational and approximation error price. If the true pos-
terior has a large number of modes that matter then current
inference techniques may face an unsurmountable challenge or
endure a potentially serious approximation. This is in addition
to the difficulties raised by the intractable partition function in
undirected graphical models. Moreover a posterior distribution
over latent variables is not yet a simple usable feature vector
that can for example be fed to a classifier. So actual feature
values are typically derived from that distribution, taking the
latent variable’s expectation (as is typically done with RBMs),
their marginal probability, or finding their most likely value
(as in sparse coding). If we are to extract stable deterministic
numerical feature values in the end anyway, an alternative
(apparently) non-probabilistic feature learning paradigm that
focuses on carrying out this part of the computation, very effi-
ciently, is that of auto-encoders and other directly parametrized
feature or representation functions. The commonality between
these methods is that they learn a direct encoding, i.e., a
parametric map from inputs to their representation.

Regularized auto-encoders, discussed next, also involve
learning a decoding function that maps back from represen-
tation to input space. Sections 8.1 and 11.3 discuss direct
encoding methods that do not require a decoder, such as semi-
supervised embedding (Weston et al., 2008) and slow feature
analysis (Wiskott and Sejnowski, 2002).

7.1 Auto-Encoders
In the auto-encoder framework (LeCun, 1987; Bourlard and
Kamp, 1988; Hinton and Zemel, 1994), one starts by ex-
plicitly defining a feature-extracting function in a specific
parametrized closed form. This function, that we will denote
fθ, is called the encoder and will allow the straightforward
and efficient computation of a feature vector h = fθ(x)
from an input x. For each example x(t) from a data set
{x(1), . . . , x(T )}, we define

h(t) = fθ(x
(t)) (18)

where h(t) is the feature-vector or representation or code com-
puted from x(t). Another closed form parametrized function
gθ, called the decoder, maps from feature space back into
input space, producing a reconstruction r = gθ(h). Whereas
probabilistic models are defined from an explicit probability
function and are trained to maximize (often approximately) the
data likelihood (or a proxy), auto-encoders are parametrized
through their encoder and decoder and are trained using a
different training principle. The set of parameters θ of the
encoder and decoder are learned simultaneously on the task
of reconstructing as well as possible the original input, i.e.
attempting to incur the lowest possible reconstruction error
L(x, r) – a measure of the discrepancy between x and its
reconstruction r – over training examples. Good generalization
means low reconstruction error at test examples, while having
high reconstruction error for most other x configurations. To
capture the structure of the data-generating distribution, it
is therefore important that something in the training crite-
rion or the parametrization prevents the auto-encoder from
learning the identity function, which has zero reconstruction
error everywhere. This is achieved through various means in
the different forms of auto-encoders, as described below in
more detail, and we call these regularized auto-encoders. A
particular form of regularization consists in constraining the
code to have a low dimension, and this is what the classical
auto-encoder or PCA do.

In summary, basic auto-encoder training consists in finding
a value of parameter vector θ minimizing reconstruction error

JAE(θ) =
∑
t

L(x(t), gθ(fθ(x
(t)))) (19)

where x(t) is a training example. This minimization is usually
carried out by stochastic gradient descent as in the training
of Multi-Layer-Perceptrons (MLPs). Since auto-encoders were
primarily developed as MLPs predicting their input, the most
commonly used forms for the encoder and decoder are affine
mappings, optionally followed by a non-linearity:

fθ(x) = sf (b+Wx) (20)
gθ(h) = sg(d+W ′h) (21)

where sf and sg are the encoder and decoder activation
functions (typically the element-wise sigmoid or hyperbolic
tangent non-linearity, or the identity function if staying linear).
The set of parameters of such a model is θ = {W, b,W ′, d}
where b and d are called encoder and decoder bias vectors,
and W and W ′ are the encoder and decoder weight matrices.

The choice of sg and L depends largely on the input domain
range and nature, and are usually chosen so that L returns a
negative log-likelihood for the observed value of x. A natural
choice for an unbounded domain is a linear decoder with a
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squared reconstruction error, i.e. sg(a) = a and L(x, r) =
‖x − r‖2. If inputs are bounded between 0 and 1 however,
ensuring a similarly-bounded reconstruction can be achieved
by using sg = sigmoid. In addition if the inputs are of a binary
nature, a binary cross-entropy loss14 is sometimes used.

If both encoder and decoder use a sigmoid non-linearity,
then fθ(x) and gθ(h) have the exact same form as the
conditionals P (h | v) and P (v | h) of binary RBMs (see
Section 6.2). This similarity motivated an initial study (Bengio
et al., 2007) of the possibility of replacing RBMs with auto-
encoders as the basic pre-training strategy for building deep
networks, as well as the comparative analysis of auto-encoder
reconstruction error gradient and contrastive divergence up-
dates (Bengio and Delalleau, 2009).

One notable difference in the parametrization is that RBMs
use a single weight matrix, which follows naturally from their
energy function, whereas the auto-encoder framework allows
for a different matrix in the encoder and decoder. In practice
however, weight-tying in which one defines W ′ = WT may
be (and is most often) used, rendering the parametrizations
identical. The usual training procedures however differ greatly
between the two approaches. A practical advantage of training
auto-encoder variants is that they define a simple tractable
optimization objective that can be used to monitor progress.

In the case of a linear auto-encoder (linear encoder and
decoder) with squared reconstruction error, minimizing Eq. 19
learns the same subspace15 as PCA. This is also true when
using a sigmoid nonlinearity in the encoder (Bourlard and
Kamp, 1988), but not if the weights W and W ′ are tied
(W ′ = WT ), because W cannot be forced into being small
and W ′ large to achieve a linear encoder.

Similarly, Le et al. (2011b) recently showed that adding a
regularization term of the form

∑
t

∑
j s3(Wjx

(t)) to a linear
auto-encoder with tied weights, where s3 is a nonlinear convex
function, yields an efficient algorithm for learning linear ICA.

7.2 Regularized Auto-Encoders
Like PCA, auto-encoders were originally seen as a dimen-
sionality reduction technique and thus used a bottleneck, i.e.
dh < dx. On the other hand, successful uses of sparse
coding and RBM approaches tend to favour overcomplete
representations, i.e. dh > dx. This can allow the auto-
encoder to simply duplicate the input in the features, with
perfect reconstruction without having extracted more mean-
ingful features. Recent research has demonstrated very suc-
cessful alternative ways, called regulrized auto-encoders, to
“constrain” the representation, even when it is overcomplete.
The effect of a bottleneck or of this regularization is that the
auto-encoder cannot reconstruct well everything, it is trained
to reconstruct well the training examples and generalization
means that reconstruction error is also small on test examples.
An interesting justification (Ranzato et al., 2008) for the
sparsity penalty (or any penalty that restricts in a soft way

14. L(x, r) = −
∑dx
i=1 xi log(ri) + (1− xi) log(1− ri)

15. Contrary to traditional PCA loading factors, but similarly to the
parameters learned by probabilistic PCA, the weight vectors learned by a
linear auto-encoder are not constrained to form an orthonormal basis, nor to
have a meaningful ordering. They will however span the same subspace.

the volume of hidden configurations easily accessible by the
learner) is that it acts in spirit like the partition function of
RBMs, by making sure that only few input configurations can
have a low reconstruction error.

Alternatively, one can view the objective of the regulariza-
tion applied to an auto-encoder as making the representation
as “constant” (insensitive) as possible with respect to changes
in input. This view immediately justifies two variants of
regularized auto-encoders described below: contractive auto-
encoders reduce the number of effective degrees of freedom of
the representation (around each point) by making the encoder
contractive, i.e., making the derivative of the encoder small
(thus making the hidden units saturate), while the denoising
auto-encoder makes the whole mapping “robust”, i.e., insen-
sitive to small random perturbations, or contractive, making
sure that the reconstruction cannot stay good when moving in
most directions around a training example.

7.2.1 Sparse Auto-Encoders
The earliest uses of single-layer auto-encoders for building
deep architectures by stacking them (Bengio et al., 2007)
considered the idea of tying the encoder weights and decoder
weights to restrict capacity as well as the idea of introducing a
form of sparsity regularization (Ranzato et al., 2007). Sparsity
in the representation can be achieved by penalizing the hidden
unit biases (making these additive offset parameters more
negative) (Ranzato et al., 2007; Lee et al., 2008; Goodfellow
et al., 2009; Larochelle and Bengio, 2008) or by directly
penalizing the output of the hidden unit activations (making
them closer to their saturating value at 0) (Ranzato et al.,
2008; Le et al., 2011a; Zou et al., 2011). Penalizing the bias
runs the danger that the weights could compensate for the
bias, which could hurt numerical optimization. When directly
penalizing the hidden unit outputs, several variants can be
found in the literature, but a clear comparative analysis is
still lacking. Although the L1 penalty (i.e., simply the sum
of output elements hj in the case of sigmoid non-linearity)
would seem the most natural (because of its use in sparse cod-
ing), it is used in few papers involving sparse auto-encoders.
A close cousin of the L1 penalty is the Student-t penalty
(log(1+h2j )), originally proposed for sparse coding (Olshausen
and Field, 1996). Several papers penalize the average output
h̄j (e.g. over a minibatch), and instead of pushing it to 0,
encourage it to approach a fixed target, either through a mean-
square error penalty, or maybe more sensibly (because hj
behaves like a probability), a Kullback-Liebler divergence
with respect to the binomial distribution with probability ρ:
−ρ log h̄j− (1−ρ) log(1− h̄j)+constant, e.g., with ρ = 0.05.

7.2.2 Denoising Auto-Encoders
Vincent et al. (2008, 2010) proposed altering the training ob-
jective in Eq. 19 from mere reconstruction to that of denoising
an artificially corrupted input, i.e. learning to reconstruct the
clean input from a corrupted version. Learning the identity
is no longer enough: the learner must capture the structure
of the input distribution in order to optimally undo the effect
of the corruption process, with the reconstruction essentially
being a nearby but higher density point than the corrupted
input. Figure 3 illustrates that the Denoising Auto-Encoder
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(DAE) is learning a reconstruction function that corresponds
to a vector field pointing towards high-density regions (the
manifold where examples concentrate).

Corrupted input 

Corrupted input 

prior:&examples&concentrate&
near&a&lower&dimensional&
“manifold”&&

original  
input 

Fig. 3. When data concentrate near a lower-dimensional
manifold, the corruption vector is typically almost orthogonal to
the manifold, and the reconstruction function learns to denoise,
map from low-probability configurations (corrupted inputs) to
high-probability ones (original inputs), creating a vector field
aligned with the score (derivative of the estimated density)..

Formally, the objective optimized by a DAE is:

JDAE =
∑
t

Eq(x̃|x(t))
[
L(x(t), gθ(fθ(x̃)))

]
(22)

where Eq(x̃|x(t)) [·] averages over corrupted examples x̃ drawn
from corruption process q(x̃|x(t)). In practice this is optimized
by stochastic gradient descent, where the stochastic gradient is
estimated by drawing one or a few corrupted versions of x(t)

each time x(t) is considered. Corruptions considered in Vin-
cent et al. (2010) include additive isotropic Gaussian noise,
salt and pepper noise for gray-scale images, and masking
noise (salt or pepper only), e.g., setting some randomly chosen
inputs to 0 (independently per example). Masking noise has
been used in most of the simulations. Qualitatively better
features are reported with denoising, resulting in improved
classification, and DAE features performed similarly or better
than RBM features. Chen et al. (2012) show that a simpler
alternative with a closed form solution can be obtained when
restricting to a linear auto-encoder and have successfully
applied it to domain adaptation.

Vincent (2011) relates DAEs to energy-based probabilistic
models: DAEs basically learn in r(x̃) − x̃ a vector pointing
in the direction of the estimated score ∂ log p(x̃)

∂x̃ (Figure 3). In
the special case of linear reconstruction and squared error,
Vincent (2011) shows that training an affine-sigmoid-affine
DAE amounts to learning an energy-based model, whose
energy function is very close to that of a GRBM. Training uses
a regularized variant of the score matching parameter estima-
tion technique (Hyvärinen, 2005; Hyvärinen, 2008; Kingma
and LeCun, 2010) termed denoising score matching (Vincent,
2011). Swersky (2010) had shown that training GRBMs with
score matching is equivalent to training a regular auto-encoder
with an additional regularization term, while, following up on
the theoretical results in Vincent (2011), Swersky et al. (2011)
showed the practical advantage of denoising to implement
score matching efficiently. Finally Alain and Bengio (2012)
generalize Vincent (2011) and prove that DAEs of arbitrary
parametrization with small Gaussian corruption noise are
general estimators of the score.

7.2.3 Contractive Auto-Encoders
Contractive Auto-Encoders (CAE), proposed by Rifai et al.
(2011a), follow up on Denoising Auto-Encoders (DAE) and
share a similar motivation of learning robust representations.
CAEs achieve this by adding an analytic contractive penalty
to Eq. 19: the Frobenius norm of the encoder’s Jacobian,
and results in penalizing the sensitivity of learned features to
infinitesimal input variations. Let J(x) = ∂fθ

∂x (x) the Jacobian
matrix of the encoder at x. The CAE’s training objective is

JCAE =
∑
t

L(x(t), gθ(fθ(x
(t)))) + λ

∥∥∥J(x(t))∥∥∥2
F

(23)

where λ is a hyper-parameter controlling the strength of the
regularization. For an affine sigmoid encoder, the contractive
penalty term is easy to compute:

Jj(x) = fθ(x)j(1− fθ(x)j)Wj

‖J(x)‖2F =
∑
j

(fθ(x)j(1− fθ(x)j))2‖Wj‖2 (24)

There are at least three notable differences with DAEs, which
may be partly responsible for the better performance that CAE
features seem to empirically demonstrate: (a) the sensitivity of
the features is penalized16 rather than that of the reconstruc-
tion; (b) the penalty is analytic rather than stochastic: an effi-
ciently computable expression replaces what might otherwise
require dx corrupted samples to size up (i.e. the sensitivity in
dx directions); (c) a hyper-parameter λ allows a fine control of
the trade-off between reconstruction and robustness (while the
two are mingled in a DAE). Note however that there is a tight
connection between the DAE and the CAE: as shown in (Alain
and Bengio, 2012) a DAE with small corruption noise can be
seen (through a Taylor expansion) as a type of contractive
auto-encoder where the contractive penalty is on the whole
reconstruction function rather than just on the encoder17.

A potential disadvantage of the CAE’s analytic penalty is
that it amounts to only encouraging robustness to infinitesimal
input variations. This is remedied in Rifai et al. (2011b) with
the CAE+H, that penalizes all higher order derivatives, in an
efficient stochastic manner, by adding a term that encourages
J(x) and J(x+ ε) to be close:

JCAE+H =
∑
t

L(x(t), gθ(x
(t))) + λ

∥∥∥J(x(t))∥∥∥2
F

+γEε
[
‖J(x)− J(x+ ε)‖2F

]
(25)

where ε ∼ N (0, σ2I), and γ is the associated regularization
strength hyper-parameter.

The DAE and CAE have been successfully used to win
the final phase of the Unsupervised and Transfer Learning
Challenge (Mesnil et al., 2011). The representation learned
by the CAE tends to be saturated rather than sparse, i.e.,
most hidden units are near the extremes of their range (e.g. 0
or 1), and their derivative ∂hi(x)

∂x is near 0. The non-saturated
units are few and sensitive to the inputs, with their associated
filters (weight vectors) together forming a basis explaining
the local changes around x, as discussed in Section 8.2.
Another way to get saturated (nearly binary) units is semantic
hashing (Salakhutdinov and Hinton, 2007).

16. i.e., the robustness of the representation is encouraged.
17. but note that in the CAE, the decoder weights are tied to the encoder

weights, to avoid degenerate solutions, and this should also make the decoder
contractive.
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7.2.4 Predictive Sparse Decomposition
Sparse coding (Olshausen and Field, 1996) may be viewed as a
kind of auto-encoder that uses a linear decoder with a squared
reconstruction error, but whose non-parametric encoder fθ
performs the comparatively non-trivial and relatively costly
iterative minimization of Eq. 2. A practically successful variant
of sparse coding and auto-encoders, named Predictive Sparse
Decomposition or PSD (Kavukcuoglu et al., 2008) replaces
that costly and highly non-linear encoding step by a fast
non-iterative approximation during recognition (computing the
learned features). PSD has been applied to object recognition
in images and video (Kavukcuoglu et al., 2009, 2010; Jarrett
et al., 2009), but also to audio (Henaff et al., 2011), mostly
within the framework of multi-stage convolutional deep archi-
tectures (Section 11.2). The main idea can be summarized
by the following equation for the training criterion, which
is simultaneously optimized with respect to hidden codes
(representation) h(t) and with respect to parameters (W,α):
JPSD =

∑
t

λ‖h(t)‖1+‖x(t)−Wh(t)‖22+‖h(t)− fα(x(t))‖22 (26)

where x(t) is the input vector for example t, h(t) is the
optimized hidden code for that example, and fα(·) is the
encoding function, the simplest variant being

fα(x
(t)) = tanh(b+WTx(t)) (27)

where encoding weights are the transpose of decoding
weights. Many variants have been proposed, including the
use of a shrinkage operation instead of the hyperbolic tan-
gent (Kavukcuoglu et al., 2010). Note how the L1 penalty on
h tends to make them sparse, and how this is the same criterion
as sparse coding with dictionary learning (Eq. 3) except for the
additional constraint that one should be able to approximate
the sparse codes h with a parametrized encoder fα(x). One can
thus view PSD as an approximation to sparse coding, where we
obtain a fast approximate encoder. Once PSD is trained, object
representations fα(x) are used to feed a classifier. They are
computed quickly and can be further fine-tuned: the encoder
can be viewed as one stage or one layer of a trainable multi-
stage system such as a feedforward neural network.

PSD can also be seen as a kind of auto-encoder where
the codes h are given some freedom that can help to further
improve reconstruction. One can also view the encoding
penalty added on top of sparse coding as a kind of regularizer
that forces the sparse codes to be nearly computable by a
smooth and efficient encoder. This is in contrast with the codes
obtained by complete optimization of the sparse coding crite-
rion, which are highly non-smooth or even non-differentiable,
a problem that motivated other approaches to smooth the
inferred codes of sparse coding (Bagnell and Bradley, 2009),
so a sparse coding stage could be jointly optimized along with
following stages of a deep architecture.

8 REPRESENTATION LEARNING AS MANI-
FOLD LEARNING
Another important perspective on representation learning is
based on the geometric notion of manifold. Its premise is
the manifold hypothesis, according to which real-world data
presented in high dimensional spaces are expected to con-
centrate in the vicinity of a manifold M of much lower

dimensionality dM, embedded in high dimensional input space
Rdx . This prior seems particularly well suited for AI tasks
such as those involving images, sounds or text, for which
most uniformly sampled input configurations are unlike natural
stimuli. As soon as there is a notion of “representation”
then one can think of a manifold by considering the vari-
ations in input space, which are captured by or reflected
(by corresponding changes) in the learned representation.
To first approximation, some directions are well preserved
(the tangent directions of the manifold) while others aren’t
(directions orthogonal to the manifolds). With this perspec-
tive, the primary unsupervised learning task is then seen as
modeling the structure of the data-supporting manifold18. The
associated representation being learned can be associated with
an intrinsic coordinate system on the embedded manifold. The
archetypal manifold modeling algorithm is, not surprisingly,
also the archetypal low dimensional representation learning
algorithm: Principal Component Analysis, which models a
linear manifold. It was initially devised with the objective
of finding the closest linear manifold to a cloud of data
points. The principal components, i.e. the representation fθ(x)
that PCA yields for an input point x, uniquely locates its
projection on that manifold: it corresponds to intrinsic co-
ordinates on the manifold. Data manifold for complex real
world domains are however expected to be strongly non-
linear. Their modeling is sometimes approached as patchworks
of locally linear tangent spaces (Vincent and Bengio, 2003;
Brand, 2003). The large majority of algorithms built on
this geometric perspective adopt a non-parametric approach,
based on a training set nearest neighbor graph (Schölkopf
et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000;
Brand, 2003; Belkin and Niyogi, 2003; Donoho and Grimes,
2003; Weinberger and Saul, 2004; Hinton and Roweis, 2003;
van der Maaten and Hinton, 2008). In these non-parametric
approaches, each high-dimensional training point has its own
set of free low-dimensional embedding coordinates, which are
optimized so that certain properties of the neighborhood graph
computed in original high dimensional input space are best
preserved. These methods however do not directly learn a
parametrized feature extraction function fθ(x) applicable to
new test points19, which seriously limits their use as feature
extractors, except in a transductive setting. Comparatively few
non-linear manifold learning methods have been proposed,
that learn a parametric map that can directly compute a
representation for new points; we will focus on these.

8.1 Learning a parametric mapping based on a
neighborhood graph
Some of the above non-parametric manifold learning al-
gorithms can be modified to learn a parametric mapping
fθ, i.e., applicable to new points: instead of having free

18. Actually, data points need not strictly lie on the “manifold”, but the
probability density is expected to fall off sharply as one moves away from it,
and it may actually be constituted of several possibly disconnected manifolds
with different intrinsic dimensionality.

19. For several of these techniques, representations for new points can
be computed using the Nyström approximation as has been proposed as
an extension in (Bengio et al., 2004), but this remains cumbersome and
computationally expensive.
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low-dimensional embedding coordinate “parameters” for each
training point, these coordinates are obtained through an
explicitly parametrized function, as with the parametric vari-
ant (van der Maaten, 2009) of t-SNE (van der Maaten and
Hinton, 2008).

Instead, Semi-Supervised Embedding (Weston et al., 2008)
learns a direct encoding while taking into account the manifold
hypothesis through a neighborhood graph. A parametrized
neural network architecture simultaneously learns a manifold
embedding and a classifier. The training criterion encourages
training set neigbhors to have similar representations.

The reduced and tightly controlled number of free param-
eters in such parametric methods, compared to their pure
non-parametric counterparts, forces models to generalize the
manifold shape non-locally (Bengio et al., 2006b), which can
translate into better features and final performance (van der
Maaten and Hinton, 2008). However, basing the modeling of
manifolds on training set neighborhood relationships might
be risky statistically in high dimensional spaces (sparsely
populated due to the curse of dimensionality) as e.g. most
Euclidean nearest neighbors risk having too little in common
semantically. The nearest neighbor graph is simply not enough
densely populated to map out satisfyingly the wrinkles of
the target manifold (Bengio and Monperrus, 2005; Bengio
et al., 2006b; Bengio and LeCun, 2007). It can also become
problematic computationally to consider all pairs of data
points20, which scales quadratically with training set size.

8.2 Learning to represent non-linear manifolds
Can we learn a manifold without requiring nearest neighbor
searches? Yes, for example, with regularized auto-encoders or
PCA. In PCA, the sensitivity of the extracted components (the
code) to input changes is the same regardless of position x.
The tangent space is the same everywhere along the linear
manifold. By contrast, for a non-linear manifold, the tangent
of the manifold changes as we move on the manifold, as
illustrated in Figure 6. In non-linear representation-learning
algorithms it is convenient to think about the local variations
in the representation as the input x is varied on the manifold,
i.e., as we move among high-probability configurations. As
we discuss below, the first derivative of the encoder therefore
specifies the shape of the manifold (its tangent plane) around
an example x lying on it. If the density was really concentrated
on the manifold, and the encoder had captured that, we
would find the encoder derivatives to be non-zero only in the
directions spanned by the tangent plane.

Let us consider sparse coding in this light: parameter matrix
W may be interpreted as a dictionary of input directions from
which a different subset will be picked to model the local
tangent space at an x on the manifold. That subset corresponds
to the active, i.e. non-zero, features for input x. Non-zero
component hi will be sensitive to small changes of the input
in the direction of the associated weight vector W:,i, whereas
inactive features are more likely to be stuck at 0 until a
significant displacement has taken place in input space.

20. Even if pairs are picked stochastically, many must be considered before
obtaining one that weighs significantly on the optimization objective.

The Local Coordinate Coding (LCC) algorithm (Yu et al.,
2009) is very similar to sparse coding, but is explicitly derived
from a manifold perspective. Using the same notation as that
of sparse coding in Eq. 2, LCC replaces regularization term
‖h(t)‖1 =

∑
j |h

(t)
j | yielding objective

JLCC =
∑
t

(
‖x(t) −Wh(t)‖22 + λ

∑
j

|h(t)
j |‖W:,j − x(t)‖1+p

)
(28)

This is identical to sparse coding when p = −1, but with
larger p it encourages the active anchor points for x(t) (i.e.
the codebook vectors W:,j with non-negligible |h(t)j | that
are combined to reconstruct x(t)) to be not too far from
x(t), hence the local aspect of the algorithm. An important
theoretical contribution of Yu et al. (2009) is to show that
that any Lipschitz-smooth function φ :M→ R defined on a
smooth nonlinear manifold M embedded in Rdx can be well
approximated by a globally linear function with respect to the
resulting coding scheme (i.e. linear in h), where the accuracy
of the approximation and required number dh of anchor points
depend on dM rather than dx. This result has been further
extended with the use of local tangent directions (Yu and
Zhang, 2010), as well as to multiple layers (Lin et al., 2010).

Let us now consider the efficient non-iterative “feed-
forward” encoders fθ, used by PSD and the auto-encoders
reviewed in Section 7.2, that are in the form of Eq. 20 or
27.The computed representation for x will be only signifi-
cantly sensitive to input space directions associated with non-
saturated hidden units (see e.g. Eq. 24 for the Jacobian of a
sigmoid layer). These directions to which the representation
is significantly sensitive, like in the case of PCA or sparse
coding, may be viewed as spanning the tangent space of the
manifold at training point x.

1"
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Fig. 4. The tangent vectors to the high-density manifold as
estimated by a Contractive Auto-Encoder (Rifai et al., 2011a).
The original input is shown on the top left. Each tangent vector
(images on right side of first row) corresponds to a plausible
additive deformation of the original input, as illustrated on the
second row, where a bit of the 3rd singular vector is added to
the original, to form a translated and deformed image. Unlike
in PCA, the tangent vectors are different for different inputs,
because the estimated manifold is highly non-linear..

Rifai et al. (2011a) empirically analyze in this light the
singular value spectrum of the Jacobian (derivatives of rep-
resentation vector with respect to input vector) of a trained
CAE. Here the SVD provides an ordered orthonormal basis of
most sensitive directions. The spectrum is sharply decreasing,
indicating a relatively small number of significantly sensi-
tive directions. This is taken as empirical evidence that the
CAE indeed modeled the tangent space of a low-dimensional
manifold. The leading singular vectors form a basis for the
tangent plane of the estimated manifold, as illustrated in
Figure 4. The CAE criterion is believed to achieve this thanks
to its two opposing terms: the isotropic contractive penalty,
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that encourages the representation to be equally insensitive to
changes in any input directions, and the reconstruction term,
that pushes different training points (in particular neighbors) to
have a different representation (so they may be reconstructed
accurately), thus counteracting the isotropic contractive pres-
sure only in directions tangent to the manifold.

Analyzing learned representations through the lens of the
spectrum of the Jacobian and relating it to the notion of tangent
space of a manifold is feasible, whenever the mapping is
differentiable, and regardless of how it was learned, whether
as direct encoding (as in auto-encoder variants), or derived
from latent variable inference (as in sparse coding or RBMs).
Exact low dimensional manifold models (like PCA) would
yield non-zero singular values associated to directions along
the manifold, and exact zeros for directions orthogonal to the
manifold. But in smooth models like the CAE or the RBM we
will instead have large versus relatively small singular values
(as opposed to non-zero versus exactly zero).

8.3 Leveraging the modeled tangent spaces
The local tangent space, at a point along the manifold, can
be thought of capturing locally valid transformations that
were prominent in the training data. For example Rifai et al.
(2011c) examine the tangent directions extracted with an SVD
of the Jacobian of CAEs trained on digits, images, or text-
document data: they appear to correspond to small transla-
tions or rotations for images or digits, and to substitutions
of words within a same theme for documents. Such very
local transformations along a data manifold are not expected
to change class identity. To build their Manifold Tangent
Classifier (MTC), Rifai et al. (2011c) then apply techniques
such as tangent distance (Simard et al., 1993) and tangent
propagation (Simard et al., 1992), that were initially developed
to build classifiers that are insensitive to input deformations
provided as prior domain knowledge. Now these techniques
are applied using the local leading tangent directions extracted
by a CAE, i.e. not using any prior domain knowledge (except
the broad prior about the existence of a manifold). This
approach set a new record for MNIST digit classification
among prior-knowledge free approaches21.

9 CONNECTIONS BETWEEN PROBABILISTIC
AND DIRECT ENCODING MODELS
The standard likelihood framework for probabilistic mod-
els decomposes the training criterion for models with pa-
rameters θ in two parts: the log-likelihood logP (x|θ) (or
logP (x|h, θ) with latent variables h), and the prior logP (θ)
(or logP (h|θ) + logP (θ) with latent variables).

9.1 PSD: a probabilistic interpretation
In the case of the PSD algorithm, a connection can be made
between the above standard probabilistic view and the direct
encoding computation graph. The probabilistic model of PSD
is the same directed generative model P (x|h) of sparse coding
(Section 6.1.1), which only accounts for the decoder. The
encoder is viewed as an approximate inference mechanism to

21. It yielded 0.81% error rate using the full MNIST training set, with no
prior deformations, and no convolution.

guess P (h|x) and initialize a MAP iterative inference (where
the sparse prior P (h) is taken into account). However, in
PSD, the encoder is trained jointly with the decoder, rather
than simply taking the end result of iterative inference as a
target to approximate. An interesting view22 to reconcile these
facts is that the encoder is a parametric approximation for
the MAP solution of a variational lower bound on the joint
log-likelihood. When MAP learning is viewed as a special
case of variational learning (where the approximation of the
joint log-likelihood is with a dirac distribution located at the
MAP solution), the variational recipe tells us to simultaneously
improve the likelihood (reduce reconstruction error) and im-
prove the variational approximation (reduce the discrepancy
between the encoder output and the latent variable value).
Hence PSD sits at the intersection of probabilistic models
(with latent variables) and direct encoding methods (which
directly parametrize the mapping from input to representation).
RBMs also sit at the intersection because their particular
parametrization includes an explicit mapping from input to
representation, thanks to the restricted connectivity between
hidden units. However, this nice property does not extend
to their natural deep generalizations, i.e., Deep Boltzmann
Machines, discussed in Section 10.2.

9.2 Regularized Auto-Encoders Capture Local
Structure of the Density
Can we also say something about the probabilistic interpreta-
tion of regularized auto-encoders? Their training criterion does
not fit the standard likelihood framework because this would
involve a data-dependent “prior”. An interesting hypothesis
emerges to answer that question, out of recent theoretical
results (Vincent, 2011; Alain and Bengio, 2012): the training
criterion of regularized auto-encoders, instead of being a form
of maximum likelihood, corresponds to a different inductive
principle, such as score matching. The score matching con-
nection is discussed in Section 7.2.2 and has been shown for
a particular parametrization of DAE and equivalent Gaussian
RBM (Vincent, 2011). The work in Alain and Bengio (2012)
generalizes this idea to a broader class of parametrizations (ar-
bitrary encoders and decoders), and shows that by regularizing
the auto-encoder so that it be contractive, one obtains that the
reconstruction function and its derivative estimate first and
second derivatives of the underlying data-generative density.
This view can be exploited to successfully sample from auto-
encoders, as shown in Rifai et al. (2012); Bengio et al. (2012).
The proposed sampling algorithms are MCMCs similar to
Langevin MCMC, using not just the estimated first derivative
of the density but also the estimated manifold tangents so as
to stay close to manifolds of high density.

This interpretation connects well with the geometric per-
spective introduced in Section 8. The regularization effects
(e.g., due to a sparsity regularizer, a contractive regularizer,
or the denoising criterion) asks the learned representation to
be as insensitive as possible to the input, while minimiz-
ing reconstruction error on the training examples forces the
representation to contain just enough information to distin-

22. suggested by Ian Goodfellow, personal communication
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Fig. 5. Reconstruction function r(x) (green) learned by a
high-capacity autoencoder on 1-dimensional input, minimizing
reconstruction error at training examples x(t) (r(x(t)) in red)
while trying to be as constant as possible otherwise. The dotted
line is the identity reconstruction (which might be obtained
without the regularizer). The blue arrows shows the vector field
of r(x)−x pointing towards high density peaks estimated by the
model, and estimating the score (log-density derivative)..

guish them. The solution is that variations along the high-
density manifolds are preserved while other variations are
compressed: the reconstruction function should be as constant
as possible while reproducing training examples, i.e., points
near a training example should be mapped to that training
example (Figure 5). The reconstruction function should map
an input towards the nearest point manifold, i.e., the difference
between reconstruction and input is a vector aligned with
the estimated score (the derivative of the log-density with
respect to the input). The score can be zero on the manifold
(where reconstruction error is also zero), at local maxima of
the log-density, but it can also be zero at local minima. It
means that we cannot equate low reconstruction error with
high estimated probability. The second derivatives of the log-
density corresponds to the first derivatives of the reconstruction
function, and on the manifold (where the first derivative is 0),
they indicate the tangent directions of the manifold (where the
first derivative remains near 0).

Fig. 6. Sampling from regularized auto-encoders (Rifai et al.,
2012; Bengio et al., 2012): each MCMC step adds to current
state x the noise δ mostly in the directions of the estimated man-
ifold tangent plane H and projects back towards the manifold
(high-density regions) by performing a reconstruction step..

As illustrated in Figure 6, the basic idea of the auto-encoder
sampling algorithms in Rifai et al. (2012); Bengio et al. (2012)
is to make MCMC moves where one (a) moves toward the
manifold by following the density gradient (i.e., applying a

reconstruction) and (b) adds noise in the directions of the
leading singular vectors of the reconstruction (or encoder)
Jacobian, corresponding to those associated with smallest
second derivative of the log-density.

9.3 Learning Approximate Inference
Let us now consider from closer how a representation is
computed in probabilistic models with latent variables, when
iterative inference is required. There is a computation graph
(possibly with random number generation in some of the
nodes, in the case of MCMC) that maps inputs to repre-
sentation, and in the case of deterministic inference (e.g.,
MAP inference or variational inference), that function could
be optimized directly. This is a way to generalize PSD that has
been explored in recent work on probabilistic models at the
intersection of inference and learning (Bagnell and Bradley,
2009; Gregor and LeCun, 2010b; Grubb and Bagnell, 2010;
Salakhutdinov and Larochelle, 2010; Stoyanov et al., 2011;
Eisner, 2012), where a central idea is that instead of using a
generic inference mechanism, one can use one that is learned
and is more efficient, taking advantage of the specifics of the
type of data on which it is applied.

9.4 Sampling Challenges
A troubling challenge with many probabilistic models with
latent variables like most Boltzmann machine variants is that
good MCMC sampling is required as part of the learning
procedure, but that sampling becomes extremely inefficient (or
unreliable) as training progresses because the modes of the
learned distribution become sharper, making mixing between
modes very slow. Whereas initially during training a learner as-
signs mass almost uniformly, as training progresses, its entropy
decreases, approaching the entropy of the target distribution as
more examples and more computation are provided. According
to our Manifold and Natural Clustering priors of Section 3.1,
the target distribution has sharp modes (manifolds) separated
by extremely low density areas. Mixing then becomes more
difficult because MCMC methods, by their very nature, tend
to make small steps to nearby high-probability configurations.
This is illustrated in Figure 7.

1"

Fig. 7. Top: early during training, MCMC mixes easily between
modes because the estimated distribution has high entropy
and puts enough mass everywhere for small-steps movements
(MCMC) to go from mode to mode. Bottom: later on, training
relying on good mixing can stall because estimated modes are
separated by wide low-density deserts..

Bengio et al. (2013) suggest that deep representations could
help mixing between such well separated modes, based on
both theoretical arguments and on empirical evidence. The
idea is that if higher-level representations disentangle better
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the underlying abstract factors, then small steps in this abstract
space (e.g., swapping from one category to another) can easily
be done by MCMC. The high-level representations can then
be mapped back to the input space in order to obtain input-
level samples, as in the Deep Belief Networks (DBN) sampling
algorithm (Hinton et al., 2006). This has been demonstrated
both with DBNs and with the newly proposed algorithm for
sampling from contracting and denoising auto-encoders (Rifai
et al., 2012; Bengio et al., 2012). This observation alone does
not suffice to solve the problem of training a DBN or a DBM,
but it may provide a crucial ingredient, and it makes it possible
to consider successfully sampling from deep models trained
by procedures that do not require an MCMC, like the stacked
regularized auto-encoders used in Rifai et al. (2012).

9.5 Evaluating and Monitoring Performance
It is always possible to evaluate a feature learning algorithm
in terms of its usefulness with respect to a particular task (e.g.
object classification), with a predictor that is fed or initialized
with the learned features. In practice, we do this by saving
the features learned (e.g. at regular intervals during training,
to perform early stopping) and training a cheap classifier on
top (such as a linear classifier). However, training the final
classifier can be a substantial computational overhead (e.g.,
supervised fine-tuning a deep neural network takes usually
more training iterations than the feature learning itself), so
we may want to avoid having to train a classifier for ev-
ery training iteration of the unsupervised learner and every
hyper-parameter setting. More importantly this may give an
incomplete evaluation of the features (what would happen for
other tasks?). All these issues motivate the use of methods to
monitor and evaluate purely unsupervised performance. This
is rather easy with all the auto-encoder variants (with some
caution outlined below) and rather difficult with the undirected
graphical models such as the RBM and Boltzmann machines.

For auto-encoder and sparse coding variants, test set re-
construction error can readily be computed, but by itself may
be misleading because larger capacity (e.g., more features,
more training time) tends to systematically lead to lower
reconstruction error, even on the test set. Hence it cannot be
used reliably for selecting most hyper-parameters. On the other
hand, denoising reconstruction error is clearly immune to this
problem, so that solves the problem for DAEs. Based on the
connection between DAEs and CAEs uncovered in Bengio
et al. (2012); Alain and Bengio (2012), this immunity can be
extended to DAEs, but not to the hyper-parameter controlling
the amount of noise or of contraction.

For RBMs and some (not too deep) Boltzmann machines,
one option is the use of Annealed Importance Sampling (Mur-
ray and Salakhutdinov, 2009) in order to estimate the partition
function (and thus the test log-likelihood). Note that this esti-
mator can have high variance and that it becomes less reliable
(variance becomes too large) as the model becomes more
interesting, with larger weights, more non-linearity, sharper
modes and a sharper probability density function (see our
previous discussion in Section 9.4). Another interesting and
recently proposed option for RBMs is to track the partition
function during training (Desjardins et al., 2011), which could

be useful for early stopping and reducing the cost of ordinary
AIS. For toy RBMs (e.g., 25 hidden units or less, or 25
inputs or less), the exact log-likelihood can also be computed
analytically, and this can be a good way to debug and verify
some properties of interest.

10 GLOBAL TRAINING OF DEEP MODELS
One of the most interesting challenges raised by deep archi-
tectures is: how should we jointly train all the levels? In the
previous section and in Section 4 we have only discussed
how single-layer models could be combined to form a deep
model. Here we consider joint training of all the levels and
the difficulties that may arise.

10.1 The Challenge of Training Deep Architectures
Higher-level abstraction means more non-linearity. It means
that two nearby input configurations may be interpreted very
differently because a few surface details change the underlying
semantics, whereas most other changes in the surface details
would not change the underlying semantics. The representa-
tions associated with input manifolds may be complex because
the mapping from input to representation may have to unfold
and distort input manifolds that generally have complicated
shapes into spaces where distributions are much simpler, where
relations between factors are simpler, maybe even linear or
involving many (conditional) independencies. Our expectation
is that modeling the joint distribution between high-level
abstractions and concepts should be much easier in the sense
of requiring much less data to learn. The hard part is learning a
good representation that does this unfolding and disentangling.
This may be at the price of a more difficult training problem,
possibly involving ill-conditioning and local minima.

It is only since 2006 that researchers have seriously inves-
tigated ways to train deep architectures, to the exception of
the convolutional networks (LeCun et al., 1998b). The first
realization (Section 4) was that unsupervised or supervised
layer-wise training was easier, and that this could be taken
advantage of by stacking single-layer models into deeper ones.

It is interesting to ask why does the layerwise unsuper-
vised pre-training procedure sometimes help a supervised
learner (Erhan et al., 2010b). There seems to be a more
general principle at play 23 of guiding the training of inter-
mediate representations, which may be easier than trying to
learn it all in one go. This is nicely related to the curriculum
learning idea (Bengio et al., 2009), that it may be much easier
to learn simpler concepts first and then build higher-level
ones on top of simpler ones. This is also coherent with the
success of several deep learning algorithms that provide some
such guidance for intermediate representations, like Semi-
Supervised Embedding (Weston et al., 2008).

The question of why unsupervised pre-training could be
helpful was extensively studied (Erhan et al., 2010b), trying
to dissect the answer into a regularization effect and an
optimization effect. The regularization effect is clear from
the experiments where the stacked RBMs or denoising auto-
encoders are used to initialize a supervised classification neural
network (Erhan et al., 2010b). It may simply come from the

23. First suggested to us by Leon Bottou
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use of unsupervised learning to bias the learning dynamics
and initialize it in the basin of attraction of a “good” local
minimum (of the training criterion), where “good” is in terms
of generalization error. The underlying hypothesis exploited
by this procedure is that some of the features or latent factors
that are good at capturing the leading variations in the input
distribution are also good at capturing the variations in the
target output random variables of interest (e.g., classes). The
optimization effect is more difficult to tease out because the
top two layers of a deep neural net can just overfit the training
set whether the lower layers compute useful features or not,
but there are several indications that optimizing the lower
levels with respect to a supervised training criterion can be
challenging.

One such indication is that changing the numerical con-
ditions of the optimization procedure can have a profound
impact on the joint training of a deep architecture, for ex-
ample by changing the initialization range and changing the
type of non-linearity used (Glorot and Bengio, 2010), much
more so than with shallow architectures. One hypothesis to
explain some of the difficulty in the optimization of deep
architectures is centered on the singular values of the Jacobian
matrix associated with the transformation from the features
at one level into the features at the next level (Glorot and
Bengio, 2010). If these singular values are all small (less than
1), then the mapping is contractive in every direction and
gradients would vanish when propagated backwards through
many layers. This is a problem already discussed for recurrent
neural networks (Bengio et al., 1994), which can be seen as
very deep networks with shared parameters at each layer, when
unfolded in time. This optimization difficulty has motivated
the exploration of second-order methods for deep architectures
and recurrent networks, in particular Hessian-free second-
order methods (Martens, 2010; Martens and Sutskever, 2011).
Unsupervised pre-training has also been proposed to help
training recurrent networks and temporal RBMs (Sutskever
et al., 2009), i.e., at each time step there is a local signal to
guide the discovery of good features to capture in the state
variables: model with the current state (as hidden units) the
joint distribution of the previous state and the current input.
Natural gradient (Amari, 1998) methods that can be applied to
networks with millions of parameters (i.e. with good scaling
properties) have also been proposed (Le Roux et al., 2008b;
Pascanu and Bengio, 2013). Cho et al. (2011) proposes to use
adaptive learning rates for RBM training, along with a novel
and interesting idea for a gradient estimator that takes into
account the invariance of the model to flipping hidden unit bits
and inverting signs of corresponding weight vectors. At least
one study indicates that the choice of initialization (to make
the Jacobian of each layer closer to 1 across all its singular
values) could substantially reduce the training difficulty of
deep networks (Glorot and Bengio, 2010) and this is coherent
with the success of the initialization procedure of Echo State
Networks (Jaeger, 2007), as recently studied by Sutskever
(2012). There are also several experimental results (Glorot and
Bengio, 2010; Glorot et al., 2011a; Nair and Hinton, 2010)
showing that the choice of hidden units non-linearity could
influence both training and generalization performance, with

particularly interesting results obtained with sparse rectifying
units (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot
et al., 2011a; Krizhevsky et al., 2012). An old idea regarding
the ill-conditioning issue with neural networks is that of
symmetry breaking: part of the slowness of convergence may
be due to many units moving together (like sheep) and all
trying to reduce the output error for the same examples.
By initializing with sparse weights (Martens, 2010) or by
using often saturated non-linearities (such as rectifiers as max-
pooling units), gradients only flow along a few paths, which
may help hidden units to specialize more quickly. Another
promising idea to improve the conditioning of neural network
training is to nullify the average value and slope of each
hidden unit output (Raiko et al., 2012), and possibly locally
normalize magnitude as well (Jarrett et al., 2009). The debate
still rages between using online methods such as stochastic
gradient descent and using second-order methods on large
minibatches (of several thousand examples) (Martens, 2010;
Le et al., 2011a), with a variant of stochastic gradient descent
recently winning an optimization challenge 24.

Finally, several recent results exploiting large quantities
of labeled data suggest that with proper initialization
and choice of non-linearity, very deep purely supervised
networks can be trained successfully without any layerwise
pre-training (Ciresan et al., 2010; Glorot et al., 2011a; Seide
et al., 2011a; Krizhevsky et al., 2012). Researchers report
than in such conditions, layerwise unsupervised pre-training
brought little or no improvement over pure supervised
learning from scratch when training for long enough. This
reinforces the hypothesis that unsupervised pre-training
acts as a prior, which may be less necessary when very
large quantities of labeled data are available, but begs the
question of why this had not been discovered earlier. The
latest results reported in this respect (Krizhevsky et al.,
2012) are particularly interesting because they allowed to
drastically reduce the error rate of object recognition on a
benchmark (the 1000-class ImageNet task) where many more
traditional computer vision approaches had been evaluated
(http://www.image-net.org/challenges/LSVRC/2012/results.html).
The main techniques that allowed this success include the
following: efficient GPU training allowing one to train
longer (more than 100 million visits of examples), an aspect
first reported by Lee et al. (2009a); Ciresan et al. (2010),
large number of labeled examples, artificially transformed
examples (see Section 11.1), a large number of tasks (1000
or 10000 classes for ImageNet), convolutional architecture
with max-pooling (see section 11 for these latter two
techniques), rectifying non-linearities (discussed above),
careful initialization (discussed above), careful parameter
update and adaptive learning rate heuristics, layerwise
feature normalization (across features), and a new dropout
trick based on injecting strong binary multiplicative noise on
hidden units. This trick is similar to the binary noise injection
used at each layer of a stack of denoising auto-encoders.
Future work is hopefully going to help identify which of
these elements matter most, how to generalize them across

24. https://sites.google.com/site/nips2011workshop/optimization-challenges

http://www.image-net.org/challenges/LSVRC/2012/results.html
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a large variety of tasks and architectures, and in particular
contexts where most examples are unlabeled, i.e., including
an unsupervised component in the training criterion.

10.2 Joint Training of Deep Boltzmann Machines
We now consider the problem of joint training of all layers of
a specific unsupervised model, the Deep Boltzmann Machine
(DBM). Whereas much progress (albeit with many unan-
swered questions) has been made on jointly training all the
layers of deep architectures using back-propagated gradients
(i.e., mostly in the supervised setting), much less work has
been done on their purely unsupervised counterpart, e.g. with
DBMs25. Note however that one could hope that the successful
techniques described in the previous section could be applied
to unsupervised learning algorithms.

Like the RBM, the DBM is another particular subset of
the Boltzmann machine family of models where the units
are again arranged in layers. However unlike the RBM, the
DBM possesses multiple layers of hidden units, with units in
odd-numbered layers being conditionally independent given
even-numbered layers, and vice-versa. With respect to the
Boltzmann energy function of Eq. 7, the DBM corresponds
to setting U = 0 and a sparse connectivity structure in both V
and W . We can make the structure of the DBM more explicit
by specifying its energy function. For the model with two
hidden layers it is given as:

EDBM
θ (v, h(1), h(2); θ) =− vTWh(1) − h(1) T V h(2)−

d(1)
T
h(1) − d(2)

T
h(2) − bT v, (29)

with θ = {W,V, d(1), d(2), b}. The DBM can also be char-
acterized as a bipartite graph between two sets of vertices,
formed by odd and even-numbered layers (with v := h(0)).

10.2.1 Mean-field approximate inference
A key point of departure from the RBM is that the pos-
terior distribution over the hidden units (given the visibles)
is no longer tractable, due to the interactions between the
hidden units. Salakhutdinov and Hinton (2009) resort to a
mean-field approximation to the posterior. Specifically, in
the case of a model with two hidden layers, we wish to
approximate P

(
h(1), h(2) | v

)
with the factored distribution

Qv(h
(1), h(2)) =

∏N1

j=1Qv

(
h
(1)
j

) ∏N2

i=1Qv

(
h
(2)
i

)
, such

that the KL divergence KL
(
P
(
h(1), h(2) | v

)
‖Qv(h1, h2)

)
is minimized or equivalently, that a lower bound to the log
likelihood is maximized:

logP (v) > L(Qv) ≡
∑
h(1)

∑
h(2)

Qv(h
(1), h(2)) log

(
P (v, h(1), h(2))

Qv(h(1), h(2))

)
(30)

Maximizing this lower-bound with respect to the mean-field
distribution Qv(h1, h2) (by setting derivatives to zero) yields
the following mean field update equations:

ĥ
(1)
i ← sigmoid

(∑
j

Wjivj +
∑
k

Vikĥ
(2)
k + d

(1)
i

)
(31)

ĥ
(2)
k ← sigmoid

(∑
i

Vikĥ
(1)
i + d

(2)
k

)
(32)

25. Joint training of all the layers of a Deep Belief Net is much more
challenging because of the much harder inference problem involved.

Note how the above equations ostensibly look like a fixed
point recurrent neural network, i.e., with constant input. In
the same way that an RBM can be associated with a simple
auto-encoder, the above mean-field update equations for the
DBM can be associated with a recurrent auto-encoder. In that
case the training criterion involves the reconstruction error at
the last or at consecutive time steps. This type of model has
been explored by Savard (2011) and Seung (1998) and shown
to do a better job at denoising than ordinary auto-encoders.

Iterating Eq. (31-32) until convergence yields the Q param-
eters of the “variational positive phase” of Eq. 33:

L(Qv) =EQv
[
logP (v, h(1), h(2))− logQv(h

(1), h(2))
]

=EQv
[
−EDBM

θ (v, h(1), h(2))− logQv(h
(1), h(2))

]
− logZθ

∂L(Qv)
∂θ

= −EQv
[
∂EDBM

θ (v, h(1), h(2))

∂θ

]
+ EP

[
∂EDBM

θ (v, h(1), h(2))

∂θ

]
(33)

This variational learning procedure leaves the “negative
phase” untouched, which can thus be estimated through SML
or Contrastive Divergence (Hinton, 2000) as in the RBM case.

10.2.2 Training Deep Boltzmann Machines
The major difference between training a DBM and an RBM
is that instead of maximizing the likelihood directly, we
instead choose parameters to maximize the lower-bound on
the likelihood given in Eq. 30. The SML-based algorithm for
maximizing this lower-bound is as follows:

1) Clamp the visible units to a training example.
2) Iterate over Eq. (31-32) until convergence.
3) Generate negative phase samples v−, h(1)− and h(2)−

through SML.
4) Compute ∂L(Qv) /∂θ using the values obtained in steps

2-3.
5) Finally, update the model parameters with a step of

approximate stochastic gradient ascent.
While the above procedure appears to be a simple extension

of the highly effective SML scheme for training RBMs, as we
demonstrate in Desjardins et al. (2012), this procedure seems
vulnerable to falling in poor local minima which leave many
hidden units effectively dead (not significantly different from
its random initialization with small norm).

The failure of the SML joint training strategy was noted
by Salakhutdinov and Hinton (2009). As an alternative, they
proposed a greedy layer-wise training strategy. This procedure
consists in pre-training the layers of the DBM, in much the
same way as the Deep Belief Network: i.e. by stacking RBMs
and training each layer to independently model the output of
the previous layer. A final joint “fine-tuning” is done following
the above SML-based procedure.

11 BUILDING-IN INVARIANCE
It is well understood that incorporating prior domain knowl-
edge helps machine learning. Exploring good strategies for
doing so is a very important research avenue. However, if we
are to advance our understanding of core machine learning
principles, it is important that we keep comparisons between
predictors fair and maintain a clear awareness of the prior
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domain knowledge used by different learning algorithms,
especially when comparing their performance on benchmark
problems. We have so far only presented algorithms that
exploited only generic inductive biases for high dimensional
problems, thus making them potentially applicable to any
high dimensional problem. The most prevalent approach to
incorporating prior knowledge is to hand-design better features
to feed a generic classifier, and has been used extensively in
computer vision (e.g. (Lowe, 1999)). Here, we rather focus
on how basic domain knowledge of the input, in particular
its topological structure (e.g. bitmap images having a 2D
structure), may be used to learn better features.

11.1 Generating transformed examples
Generalization performance is usually improved by providing
a larger quantity of representative data. This can be achieved
by generating new examples by applying small random defor-
mations to the original training examples, using deformations
that are known not to change the target variables of interest,
e.g., an object class is invariant to small transformations of
images such as translations, rotations, scaling, or shearing.
This old approach (Baird, 1990) has been recently applied with
great success in the work of Ciresan et al. (2010) who used an
efficient GPU implementation (40× speedup) to train a stan-
dard but large deep multilayer Perceptron on deformed MNIST
digits. Using both affine and elastic deformations (Simard
et al., 2003), with plain old stochastic gradient descent, they
reach a record 0.32% classification error rate.

11.2 Convolution and pooling
Another powerful approach is based on even more basic
knowledge of merely the topological structure of the input
dimensions. By this we mean e.g., the 2D layout of pixels
in images or audio spectrograms, the 3D structure of videos,
the 1D sequential structure of text or of temporal sequences
in general. Based on such structure, one can define local
receptive fields (Hubel and Wiesel, 1959), so that each low-
level feature will be computed from only a subset of the input:
a neighborhood in the topology (e.g. a sub-image at a given
position). This topological locality constraint corresponds to a
layer having a very sparse weight matrix with non-zeros only
allowed for topologically local connections. Computing the
associated matrix products can of course be made much more
efficient than having to handle a dense matrix, in addition
to the statistical gain from a much smaller number of free
parameters. In domains with such topological structure, similar
input patterns are likely to appear at different positions, and
nearby values (e.g. consecutive frames or nearby pixels) are
likely to have stronger dependencies that are also important to
model the data. In fact these dependencies can be exploited
to discover the topology (Le Roux et al., 2008a), i.e. recover
a regular grid of pixels out of a set of vectors without any
order information, e.g. after the elements have been arbitrarily
shuffled in the same way for all examples. Thus a same local
feature computation is likely to be relevant at all translated po-
sitions of the receptive field. Hence the idea of sweeping such
a local feature extractor over the topology: this corresponds to
a convolution, and transforms an input into a similarly shaped

feature map. Equivalently to sweeping, this may be seen as
static but differently positioned replicated feature extractors
that all share the same parameters. This is at the heart of
convolutional networks (LeCun et al., 1989, 1998b) which
have been applied both to object recognition and to image
segmentation (Turaga et al., 2010). Another hallmark of the
convolutional architecture is that values computed by the same
feature detector applied at several neighboring input locations
are then summarized through a pooling operation, typically
taking their max or their sum. This confers the resulting pooled
feature layer some degree of invariance to input translations,
and this style of architecture (alternating selective feature
extraction and invariance-creating pooling) has been the ba-
sis of convolutional networks, the Neocognitron (Fukushima,
1980) and HMAX (Riesenhuber and Poggio, 1999) models,
and argued to be the architecture used by mammalian brains
for object recognition (Riesenhuber and Poggio, 1999; Serre
et al., 2007; DiCarlo et al., 2012). The output of a pooling
unit will be the same irrespective of where a specific feature
is located inside its pooling region. Empirically the use of
pooling seems to contribute significantly to improved classi-
fication accuracy in object classification tasks (LeCun et al.,
1998b; Boureau et al., 2010, 2011). A successful variant of
pooling connected to sparse coding is L2 pooling (Hyvärinen
et al., 2009; Kavukcuoglu et al., 2009; Le et al., 2010),
for which the pool output is the square root of the possibly
weighted sum of squares of filter outputs. Ideally, we would
like to generalize feature-pooling so as to learn what features
should be pooled together, e.g. as successfully done in several
papers (Hyvärinen and Hoyer, 2000; Kavukcuoglu et al., 2009;
Le et al., 2010; Ranzato and Hinton, 2010; Courville et al.,
2011b; Coates and Ng, 2011b; Gregor et al., 2011). In this
way, the pool output learns to be invariant to the variations
captured by the span of the features pooled.

Patch-based training
The simplest approach for learning a convolutional layer in an
unsupervised fashion is patch-based training: simply feeding
a generic unsupervised feature learning algorithm with local
patches extracted at random positions of the inputs. The
resulting feature extractor can then be swiped over the input to
produce the convolutional feature maps. That map may be used
as a new input for the next layer, and the operation repeated
to thus learn and stack several layers. Such an approach
was recently used with Independent Subspace Analysis (Le
et al., 2011c) on 3D video blocks, reaching the state-of-the-art
on Hollywood2, UCF, KTH and YouTube action recognition
datasets. Similarly (Coates and Ng, 2011a) compared several
feature learners with patch-based training and reached state-
of-the-art results on several classification benchmarks. Inter-
estingly, in this work performance was almost as good with
very simple k-means clustering as with more sophisticated
feature learners. We however conjecture that this is the case
only because patches are rather low dimensional (compared
to the dimension of a whole image). A large dataset might
provide sufficient coverage of the space of e.g. edges prevalent
in 6 × 6 patches, so that a distributed representation is not
absolutely necessary. Another plausible explanation for this
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success is that the clusters identified in each image patch are
then pooled into a histogram of cluster counts associated with
a larger sub-image. Whereas the output of a regular clustering
is a one-hot non-distributed code, this histogram is itself a
distributed representation, and the “soft” k-means (Coates and
Ng, 2011a) representation allows not only the nearest filter but
also its neighbors to be active.

Convolutional and tiled-convolutional training
It is possible to directly train large convolutional layers using
an unsupervised criterion. An early approach (Jain and Seung,
2008) trained a standard but deep convolutional MLP on
the task of denoising images, i.e. as a deep, convolutional,
denoising auto-encoder. Convolutional versions of the RBM
or its extensions have also been developed (Desjardins and
Bengio, 2008; Lee et al., 2009a; Taylor et al., 2010) as well as
a probabilistic max-pooling operation built into Convolutional
Deep Networks (Lee et al., 2009a,b; Krizhevsky, 2010). Other
unsupervised feature learning approaches that were adapted to
the convolutional setting include PSD (Kavukcuoglu et al.,
2009, 2010; Jarrett et al., 2009; Henaff et al., 2011), a
convolutional version of sparse coding called deconvolutional
networks (Zeiler et al., 2010), Topographic ICA (Le et al.,
2010), and mPoT that Kivinen and Williams (2012) applied
to modeling natural textures. Gregor and LeCun (2010a);
Le et al. (2010) also demonstrated the technique of tiled-
convolution, where parameters are shared only between feature
extractors whose receptive fields are k steps away (so the
ones looking at immediate neighbor locations are not shared).
This allows pooling units to be invariant to more than just
translations, and is a hybrid between convolutional networks
and earlier neural networks with local connections but no
weight sharing (LeCun, 1986, 1989).

Alternatives to pooling
Alternatively, one can also use explicit knowledge of the
expected invariants expressed mathematically to define trans-
formations that are robust to a known family of input defor-
mations, using so-called scattering operators (Mallat, 2012;
Bruna and Mallat, 2011), which can be computed in a way
interestingly analogous to deep convolutional networks and
wavelets. Like convolutional networks, the scattering operators
alternate two types of operations: convolution and pooling
(as a norm). Unlike convolutional networks, the proposed
approach keeps at each level all of the information about the
input (in a way that can be inverted), and automatically yields
a very sparse (but very high-dimensional) representation. An-
other difference is that the filters are not learned but instead
set so as to guarantee that a priori specified invariances are
robustly achieved. Just a few levels were sufficient to achieve
impressive results on several benchmark datasets.

11.3 Temporal coherence and slow features
The principle of identifying slowly moving/changing factors in
temporal/spatial data has been investigated by many (Becker
and Hinton, 1992; Wiskott and Sejnowski, 2002; Hurri and
Hyvärinen, 2003; Körding et al., 2004; Cadieu and Olshausen,
2009) as a principle for finding useful representations. In

particular this idea has been applied to image sequences and as
an explanation for why V1 simple and complex cells behave
the way they do. A good overview can be found in Hurri and
Hyvärinen (2003); Berkes and Wiskott (2005).

More recently, temporal coherence has been successfully
exploited in deep architectures to model video (Mobahi et al.,
2009). It was also found that temporal coherence discov-
ered visual features similar to those obtained by ordinary
unsupervised feature learning (Bergstra and Bengio, 2009),
and a temporal coherence penalty has been combined with a
training criterion for unsupervised feature learning (Zou et al.,
2011), sparse auto-encoders with L1 regularization, in this
case, yielding improved classification performance.

The temporal coherence prior can be expressed in several
ways, the simplest being the squared difference between
feature values at times t and t + 1. Other plausible tempo-
ral coherence priors include the following. First, instead of
penalizing the squared change, penalizing the absolute value
(or a similar sparsity penalty) would state that most of the
time the change should be exactly 0, which would intuitively
make sense for the real-life factors that surround us. Second,
one would expect that instead of just being slowly changing,
different factors could be associated with their own different
time scale. The specificity of their time scale could thus
become a hint to disentangle explanatory factors. Third, one
would expect that some factors should really be represented by
a group of numbers (such as x, y, and z position of some object
in space and the pose parameters of Hinton et al. (2011))
rather than by a single scalar, and that these groups tend
to move together. Structured sparsity penalties (Kavukcuoglu
et al., 2009; Jenatton et al., 2009; Bach et al., 2011; Gregor
et al., 2011) could be used for this purpose.
11.4 Algorithms to Disentangle Factors of Variation
The goal of building invariant features is to remove sensitivity
of the representation to directions of variance in the data that
are uninformative to the task at hand. However it is often the
case that the goal of feature extraction is the disentangling or
separation of many distinct but informative factors in the data,
e.g., in a video of people: subject identity, action performed,
subject pose relative to the camera, etc. In this situation,
the methods of generating invariant features, such as feature-
pooling, may be inadequate.

The process of building invariant features can be seen as
consisting of two steps. First, low-level features are recovered
that account for the data. Second, subsets of these low level
features are pooled together to form higher-level invariant
features, exemplified by the pooling and subsampling layers
of convolutional neural networks. The invariant representation
formed by the pooling features offers an incomplete window
on the data as the detailed representation of the lower-level
features is abstracted away in the pooling procedure. While
we would like higher-level features to be more abstract and
exhibit greater invariance, we have little control over what
information is lost through pooling. What we really would like
is for a particular feature set to be invariant to the irrelevant
features and disentangle the relevant features. Unfortunately,
it is often difficult to determine a priori which set of features
will ultimately be relevant to the task at hand.
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An interesting approach to taking advantage of some of
the factors of variation known to exist in the data is the
transforming auto-encoder (Hinton et al., 2011): instead of a
scalar pattern detector (e.g,. corresponding to the probability
of presence of a particular form in the input) one can think
of the features as organized in groups that include both a
pattern detector and pose parameters that specify attributes
of the detected pattern. In (Hinton et al., 2011), what is
assumed a priori is that pairs of examples (or consecutive ones)
are observed with an associated value for the corresponding
change in the pose parameters. For example, an animal that
controls its eyes knows what changes to its ocular motor
system were applied when going from one image on its retina
to the next. In that work, it is also assumed that the pose
changes are the same for all the pattern detectors, and this
makes sense for global changes such as image translation and
camera geometry changes. Instead, we would like to discover
the pose parameters and attributes that should be associated
with each feature detector, without having to specify ahead of
time what they should be, force them to be the same for all
features, and having to necessarily observe the changes in all
of the pose parameters or attributes.

The approach taken recently in the Manifold Tangent Clas-
sifier, discussed in section 8.3, is interesting in this respect.
Without any supervision or prior knowledge, it finds prominent
local factors of variation (tangent vectors to the manifold,
extracted from a CAE, interpreted as locally valid input ”defor-
mations”). Higher-level features are subsequently encouraged
to be invariant to these factors of variation, so that they must
depend on other characteristics. In a sense this approach is
disentangling valid local deformations along the data manifold
from other, more drastic changes, associated to other factors
of variation such as those that affect class identity.26

One solution to the problem of information loss that would
fit within the feature-pooling paradigm, is to consider many
overlapping pools of features based on the same low-level
feature set. Such a structure would have the potential to
learn a redundant set of invariant features that may not cause
significant loss of information. However it is not obvious
what learning principle could be applied that can ensure
that the features are invariant while maintaining as much
information as possible. While a Deep Belief Network or a
Deep Boltzmann Machine (as discussed in sections 4 and 10.2
respectively) with two hidden layers would, in principle, be
able to preserve information into the “pooling” second hidden
layer, there is no guarantee that the second layer features
are more invariant than the “low-level” first layer features.
However, there is some empirical evidence that the second
layer of the DBN tends to display more invariance than the
first layer (Erhan et al., 2010a).

A more principled approach, from the perspective of en-
suring a more robust compact feature representation, can
be conceived by reconsidering the disentangling of features
through the lens of its generative equivalent – feature com-
position. Since many unsupervised learning algorithms have a

26. The changes that affect class identity might, in input space, actually be
of similar magnitude to local deformations, but not follow along the manifold,
i.e. cross zones of low density.

generative interpretation (or a way to reconstruct inputs from
their high-level representation), the generative perspective can
provide insight into how to think about disentangling fac-
tors. The majority of the models currently used to construct
invariant features have the interpretation that their low-level
features linearly combine to construct the data.27 This is a
fairly rudimentary form of feature composition with significant
limitations. For example, it is not possible to linearly combine
a feature with a generic transformation (such as translation) to
generate a transformed version of the feature. Nor can we even
consider a generic color feature being linearly combined with
a gray-scale stimulus pattern to generate a colored pattern. It
would seem that if we are to take the notion of disentangling
seriously we require a richer interaction of features than that
offered by simple linear combinations.

12 CONCLUSION
This review of representation learning and deep learning has
covered three major and apparently disconnected approaches:
the probabilistic models (both the directed kind such as
sparse coding and the undirected kind such as Boltzmann
machines), the reconstruction-based algorithms related to auto-
encoders, and the geometrically motivated manifold-learning
approaches. Drawing connections between these approaches
is currently a very active area of research and is likely to
continue to produce models and methods that take advantage
of the relative strengths of each paradigm.

Practical Concerns and Guidelines. One of the criticisms
addressed to artificial neural networks and deep learning algo-
rithms is that they have many hyper-parameters and variants
and that exploring their configurations and architectures is an
art. This has motivated an earlier book on the “Tricks of the
Trade” (Orr and Muller, 1998) of which LeCun et al. (1998a)
is still relevant for training deep architectures, in particular
what concerns initialization, ill-conditioning and stochastic
gradient descent. A good and more modern compendium of
good training practice, particularly adapted to training RBMs,
is provided in Hinton (2010), while a similar guide oriented
more towards deep neural networks can be found in Bengio
(2013), both of which are part of a novel version of the
above book. Recent work on automating hyper-parameter
search (Bergstra and Bengio, 2012; Bergstra et al., 2011;
Snoek et al., 2012) is also making it more convenient, efficient
and reproducible.

Incorporating Generic AI-level Priors. We have covered
many high-level generic priors that we believe could bring
machine learning closer to AI by improving representation
learning. Many of these priors relate to the assumed existence
of multiple underlying factors of variation, whose variations
are in some sense orthogonal to each other. They are expected
to be organized at multiple levels of abstraction, hence the
need for deep architectures, which also have statistical advan-
tages because they allow to re-use parameters in a combi-
natorially efficient way. Only a few of these factors would

27. As an aside, if we are given only the values of the higher-level pooling
features, we cannot accurately recover the data because we do not know how to
apportion credit for the pooling feature values to the lower-level features. This
is simply the generative version of the consequences of the loss of information
caused by pooling.
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typically be relevant for any particular example, justifying
sparsity of representation. These factors are expected to be
related to simple (e.g., linear) dependencies, with subsets of
these explaining different random variables of interest (inputs,
tasks) and varying in structured ways in time and space
(temporal and spatial coherence). We expect future successful
applications of representation learning to refine and increase
that list of priors, and to incorporate most of them instead of
focusing on only one. Research in training criteria that better
take these priors into account are likely to move us closer to
the long-term objective of discovering learning algorithms that
can disentangle the underlying explanatory factors.

Inference. We anticipate that methods based on directly
parametrizing a representation function will incorporate more
and more of the iterative type of computation one finds in the
inference procedures of probabilistic latent-variable models.
There is already movement in the other direction, with prob-
abilistic latent-variable models exploiting approximate infer-
ence mechanisms that are themselves learned (i.e., producing a
parametric description of the representation function). A major
appeal of probabilistic models is that the semantics of the
latent variables are clear and this allows a clean separation
of the problems of modeling (choose the energy function),
inference (estimating P (h|x)), and learning (optimizing the
parameters), using generic tools in each case. On the other
hand, doing approximate inference and not taking that approxi-
mation into account explicitly in the approximate optimization
for learning could have detrimental effects, hence the appeal
of learning approximate inference. More fundamentally, there
is the question of the multimodality of the posterior P (h|x).
If there are exponentially many probable configurations of
values of the factors hi that can explain x, then we seem
to be stuck with very poor inference, either focusing on a
single mode (MAP inference), assuming some kind of strong
factorization (as in variational inference) or using an MCMC
that cannot visit enough modes of P (h|x). What we propose
as food for thought is the idea of dropping the requirement
of an explicit representation of the posterior and settle for
an implicit representation that exploits potential structure in
P (h|x) in order to represent it compactly: even though P (h|x)
may have an exponential number of modes, it may be possible
to represent it with a small set of numbers. For example,
consider computing a deterministic feature representation f(x)
that implicitly captures the information about a highly multi-
modal P (h|x), in the sense that all the questions (e.g. making
some prediction about some target concept) that can be asked
from P (h|x) can also be answered from f(x).

Optimization. Much remains to be done to better under-
stand the successes and failures of training deep architectures,
both in the supervised case (with many recent successes) and
the unsupervised case (where much more work needs to be
done). Although regularization effects can be important on
small datasets, the effects that persist on very large datasets
suggest some optimization issues are involved. Are they more
due to local minima (we now know there are huge numbers
of them) and the dynamics of the training procedure? Or
are they due mostly to ill-conditioning and may be handled
by approximate second-order methods? These basic questions

remain unanswered and deserve much more study.
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