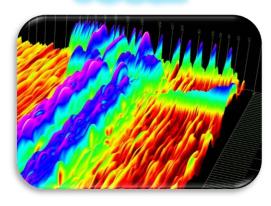


Multimodal Machine Learning

Lecture 2.1: Basic Concepts – Neural Networks
Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives


- Unimodal basic representations
 - Visual, language and acoustic modalities
- Data-driven machine learning
 - Training, validation and testing
 - Example: K-nearest neighbor
- Linear Classification
 - Score function
 - Two loss functions (cross-entropy and hinge loss)
- Neural networks
- Course project team formation

Multimodal Machine Learning

Verbal

Vocal

Visual

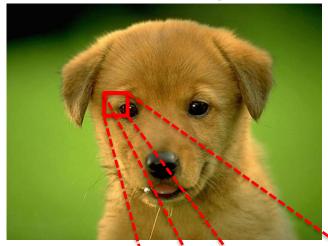
Core Technical Challenges:

Representation Translation

Alignment

Fusion

Co-Learning


These challenges are non-exclusive.

Unimodal Basic Representations

Color image

Each pixel is represented in \mathcal{R}^d , d is the number of colors (d=3 for RGB)

88	82	84	88	85	83	80	93	102	
88	80	78	80	80	78	73	94	100	
85	79	80	78	77	74	65	91	99	
38	35	40	35	39	74	77	70	65	
20	25	23	28	37	69	64	60	57	
22	26	22	28	40	65	64	59	34	
24	28	24	30	37	60	58	56	66	
21	22	23	27	38	60	67	65	67	
23	22	22	25	38	59	64	67	66	
	88 85 38 20 22 24 21	88 80 85 79 38 35 20 25 22 26 24 28 21 22	88 80 78 85 79 80 38 35 40 20 25 23 22 26 22 24 28 24 21 22 23	88 80 78 80 85 79 80 78 38 35 40 35 20 25 23 28 22 26 22 28 24 28 24 30 21 22 23 27	88 80 78 80 80 85 79 80 78 77 38 35 40 35 39 20 25 23 28 37 22 26 22 28 40 24 28 24 30 37 21 22 23 27 38	88 80 78 80 80 78 85 79 80 78 77 74 38 35 40 35 39 74 20 25 23 28 37 69 22 26 22 28 40 65 24 28 24 30 37 60 21 22 23 27 38 60	88 80 78 80 80 78 73 85 79 80 78 77 74 65 38 35 40 35 39 74 77 20 25 23 28 37 69 64 22 26 22 28 40 65 64 24 28 24 30 37 60 58 21 22 23 27 38 60 67	88 80 78 80 80 78 73 94 85 79 80 78 77 74 65 91 38 35 40 35 39 74 77 70 20 25 23 28 37 69 64 60 22 26 22 28 40 65 64 59 24 28 24 30 37 60 58 56 21 22 23 27 38 60 67 65	

Input observation x_i

82

80

26

78

80

Binary classification problem

Dog?

label $y_i \in \mathcal{Y} = \{0,1\}$

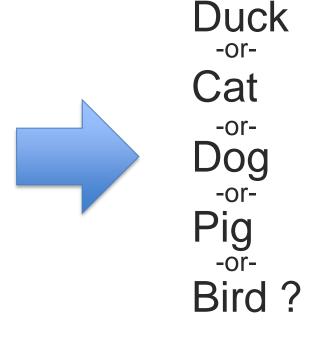
Each pixel is represented in \mathcal{R}^d , d is the number of colors (d=3 for RGB)

1		1							
	88	82	84	88	85	83	80	93	102
	88	80	78	80	80	78	73	94	100
	85	79	80	78	77	74	65	91	99
	38	35	40	35	39	74	77	70	65
	20	25	23	28	37	69	64	60	57
	22	26	22	28	40	65	64	59	34
	24	28	24	30	37	60	58	56	66
į	21	22	23	27	38	60	67	65	67
Ì	23	22	22	25	38	59	64	67	66

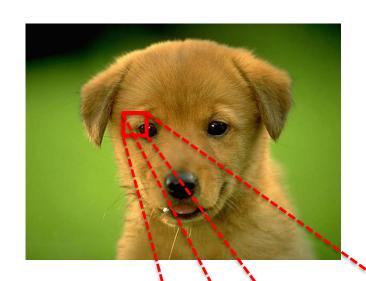
Input observation x_i

21 23

82


80

26


78

80

Multi-class classification problem

label $y_i \in \mathcal{Y} = \{0,1,2,3,...\}$

Each pixel is represented in \mathcal{R}^d , d is the number of colors (d=3 for RGB)

1		1									
	88	82	84	88	85	83	80	93	102		
	88	80	78	80	80	78	73	94	100		
	85	79	80	78	77	74	65	91	99		
	38	35	40	35	39	74	77	70	65		
	20	25	23	28	37	69	64	60	57		
	22	26	22	28	40	65	64	59	34		
	24	28	24	30	37	60	58	56	66		
į	21	22	23	27	38	60	67	65	67		
Ì	23	22	22	25	38	59	64	67	66		

nput observation x_i

21 23 82

80

26

28

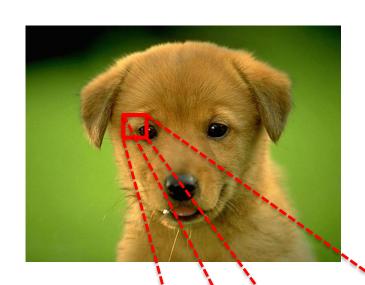
80

Multi-label (or multi-task) classification problem

Duck?

Cat?

Dog?


Pig?

Bird?

Puppy?

label vector $\mathbf{y_i} \in \mathcal{Y}^m = \{0,1\}^m$

Each pixel is represented in \mathbb{R}^d , d is the number of colors (d=3 for RGB)

		1							
	88	82	84	88	85	83	80	93	102
	88	80	78	80	80	78	73	94	100
	85	79	80	78	77	74	65	91	99
	38	35	40	35	39	74	77	70	65
	20	25	23	28	37	69	64	60	57
	22	26	22	28	40	65	64	59	34
	24	28	24	30	37	60	58	56	66
į	21	22	23	27	38	60	67	65	67
Ì	23	22	22	25	38	59	64	67	66

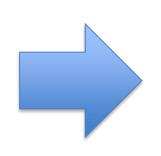
nput observation x_i

21 23

82

80

35


26

28

78

80

Multi-label (or multi-task) regression problem

Age?

Height?

Weight?

Distance?

Happy?

label vector $y_i \in \mathcal{Y}^m = \mathbb{R}^m$

Unimodal Classification – Language Modality

Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

MARTHA (CON'T)

Look around you. Look at all the great things you've done and the people you've helped.

CLARK

But you've only put up the good things they say about me.

MARTHA

Clark, honey. If I were to use the bad things they say I could cover the barn, the house and the outhouse.

Input observation x

Word-level classification

Part-of-speech?

Named entity? (names of person,...)

"one-hot" vector

 $|x_i|$ = number of words in dictionary

Unimodal Classification – Language Modality

Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

MARTHA (CON'T)

Look around you. Look at all the great things you've done and the people you've helped.

CLARK

But you've only put up the good things they say about me.

MARTHA

Clark, honey. If I were to use the bad things they say I could cover the barn, the house and the outhouse.

Input observation x

Document-level classification

"bag-of-word" vector

 $|x_i|$ = number of words in dictionary

Unimodal Classification – Language Modality

Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

MARTHA (CON'T)

Look around you. Look at all the great things you've done and the people you've helped.

CT. A D K

But you've only put up the good things they say about me.

MARTHA

Clark, honey. If I were to use the bad things they say I could cover the barn, the house and the outhouse.

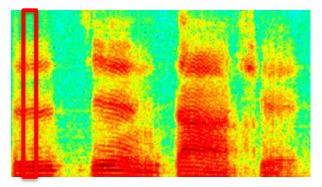
Input observation x_i

Utterance-level classification

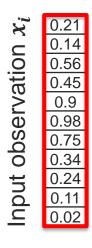
Sentiment?
(positive or negative)

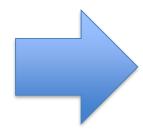
"bag-of-word" vector

 $|x_i|$ = number of words in dictionary



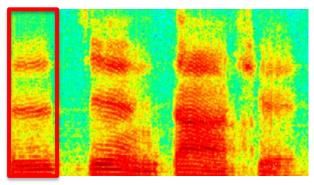
Unimodal Classification – Acoustic Modality


Digitalized acoustic signal

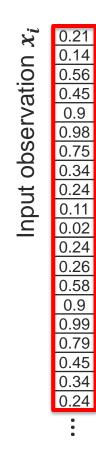


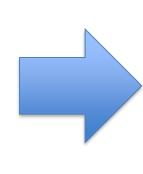
- Sampling rates: 8~96kHz
- Bit depth: 8, 16 or 24 bits
- Time window size: 20ms
 - Offset: 10ms

Spectogram


Spoken word?

Unimodal Classification – Acoustic Modality


Digitalized acoustic signal



- Sampling rates: 8~96kHz
- Bit depth: 8, 16 or 24 bits
- Time window size: 20ms
 - Offset: 10ms

Spectogram

Emotion?

Spoken word?

Voice quality?

Data-Driven Machine Learning

Data-Driven Machine Learning

- **1. Dataset:** Collection of labeled samples D: $\{x_i, y_i\}$
- 2. Training: Learn classifier on training set
- 3. Testing: Evaluate classifier on hold-out test set

Simple Classifier?

Traffic light

-or-

Dog

-or-

Basket

-or-

Kayak?

Simple Classifier: Nearest Neighbor

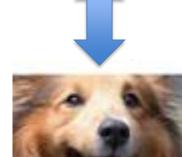
Traffic light

Dog

-or-

Basket

-or-


Kayak?

Nearest Neighbor Classifier

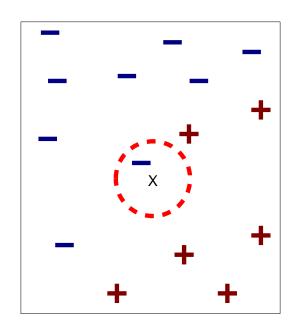
- Non-parametric approaches—key ideas:
 - "Let the data speak for themselves"
 - "Predict new cases based on similar cases"
 - "Use multiple local models instead of a single global model"
- What is the complexity of the NN classifier w.r.t training set of N images and test set of M images?
 - at training time?O(1)
 - At test time?
 O(N)

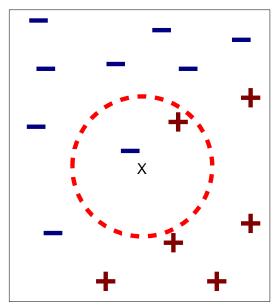
Simple Classifier: Nearest Neighbor

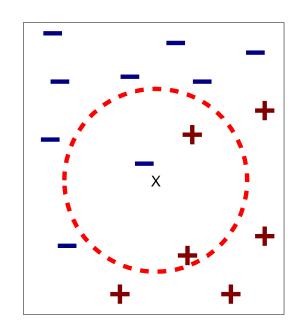
Distance metrics

L1 (Manhattan) distance:

$$d_1(x_1, x_2) = \sum_{j} \left| x_1^j - x_2^j \right|$$


L2 (Eucledian) distance:


$$d_2(x_1, x_2) = \sqrt{\sum_{j} \left(x_1^j - x_2^j\right)^2}$$


Which distance metric to use?

First hyper-parameter!

Definition of K-Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

What value should we set K?

Second hyper-parameter!

Data-Driven Approach

- **1. Dataset:** Collection of labeled samples D: $\{x_i, y_i\}$
- 2. Training: Learn classifier on training set
- 3. Validation: Select optimal hyper-parameters
- 4. Testing: Evaluate classifier on hold-out test set

Training Data

Validation Data

Test Data

Evaluation methods (for validation and testing)

- Holdout set: The available data set D is divided into two disjoint subsets,
 - the training set D_{train} (for learning a model)
 - the *test set* D_{test} (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning.
 - Unseen test set provides a unbiased estimate of accuracy.
- The test set is also called the holdout set. (the examples in the original data set *D* are all labeled with classes.)
- This method is mainly used when the data set D is large.
- Holdout methods can also be used for validation

Evaluation methods (for validation and testing)

- n-fold cross-validation: The available data is partitioned into n equal-size disjoint subsets.
- Use each subset as the test set and combine the rest n-1 subsets as the training set to learn a classifier.
- The procedure is run n times, which give n accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large.

Evaluation methods (for validation and testing)

- Leave-one-out cross-validation: This method is used when the data set is very small.
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.
- If the original data has m examples, this is mfold cross-validation
- It is a special case of cross-validation

Linear Classification: Scores and Loss

Linear Classification (e.g., neural network)

Image

(Size: 32*32*3)

?

- 1. Define a (linear) score function
- 2. Define the loss function (possibly nonlinear)
- 3. Optimization

1) Score Function

Duck?

Cat?

Dog?

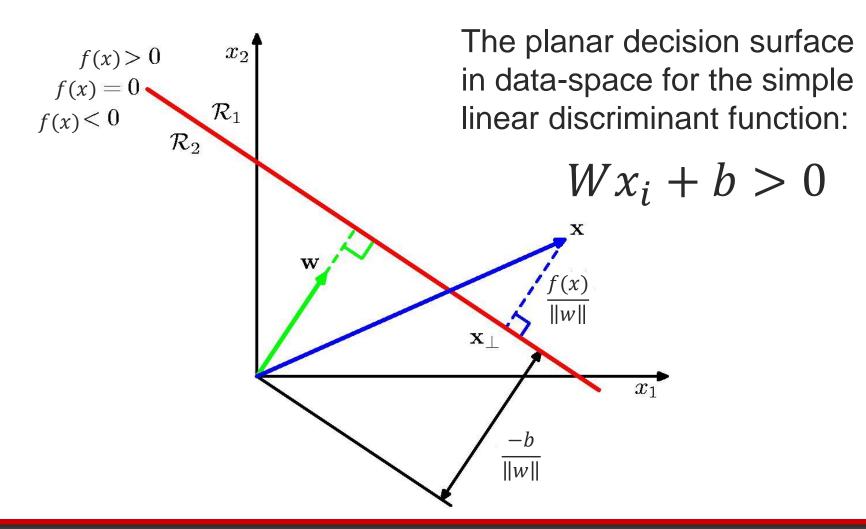
Pig?

Bird?

[3072x1]

What should be the prediction score for each label class?

For linear classifier:


 $f(x_i; W, b) = Wx_i + b$ Weights [10x3072] Bias vector

Class score [10x1]

Parameters [10x3073]

Input observation (ith element of the dataset)

Interpreting a Linear Classifier

Some Notation Tricks – Multi-Label Classification

$$W = \begin{bmatrix} W_1 & W_2 & \dots & W_N \end{bmatrix}$$

$$f(x_i; W, b) = Wx_i + b$$

$$f(x_i; W) = Wx_i$$

Weights x Input + Bias

[10x3072] [3072x1] [10x1]

Weights x Input

[10x3073] [3073x1]

The bias vector will be the last column of the weight matrix

Add a "1" at the end of the input observation vector

Some Notation Tricks

General formulation of linear classifier:

$$f(x_i; W, b)$$

"dog" linear classifier:

$$f(x_i; W_{dog}, b_{dog})$$
 or

$$f(x_i; W, b)_{dog}$$

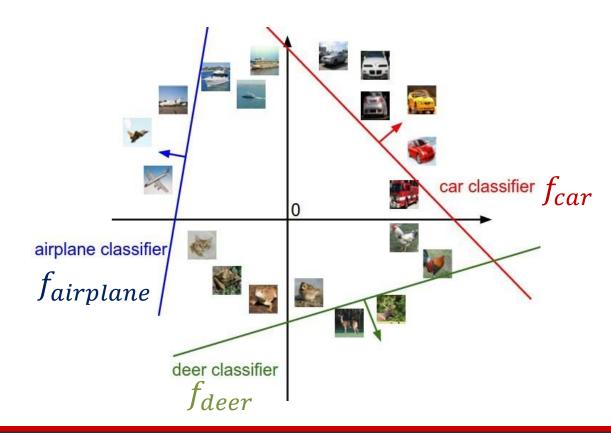
or

 f_{dog}

Linear classifier for label j:

$$f(x_i; W_j, b_j)$$

or

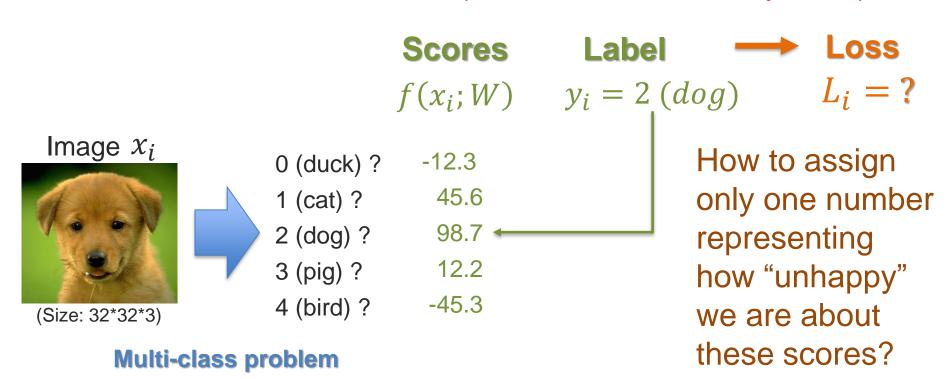

$$f(x_i; W, b)_i$$

or

 f_{j}

Interpreting Multiple Linear Classifiers

$$f(x_i; W_j, b_j) = W_j x_i + b_j$$

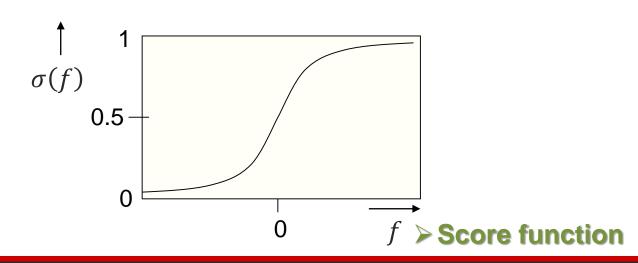


CIFAR-10 object recognition dataset

Linear Classification: 2) Loss Function

(or cost function or objective)

The loss function quantifies the amount by which the prediction scores deviate from the actual values.



A first challenge: how to normalize the scores?

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$

Logistic regression: (two classes)

$$p(y_i = "dog"|x_i; w) = \sigma(w^T x_i)$$
= true

for two-class problem $\sigma(f) = 0.5$

f >Score function

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$

Logistic regression: (two classes)

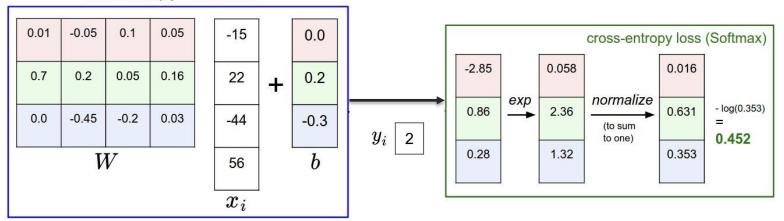
$$p(y_i = "dog"|x_i; w) = \sigma(w^T x_i)$$
= true

for two-class problem

Softmax function: (multiple classes)

$$p(y_i|x_i;W) = \frac{e^{f_{y_i}}}{\sum_j e^{f_j}}$$

Cross-entropy loss:


(or logistic loss)

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_{j} e^{f_j}}\right)$$

Softmax function

Minimizing the negative log likelihood.

matrix multiply + bias offset

Second Loss Function: Hinge Loss

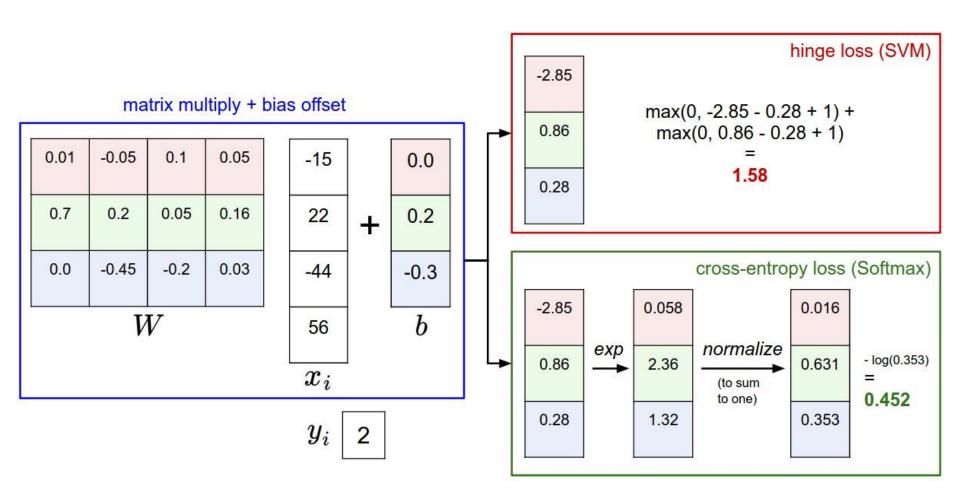
(or max-margin loss or Multi-class SVM loss)

$$L_i = \sum_{j
eq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta)$$
 loss due to

example i sum over all incorrect labels

difference between the correct class score and incorrect class score

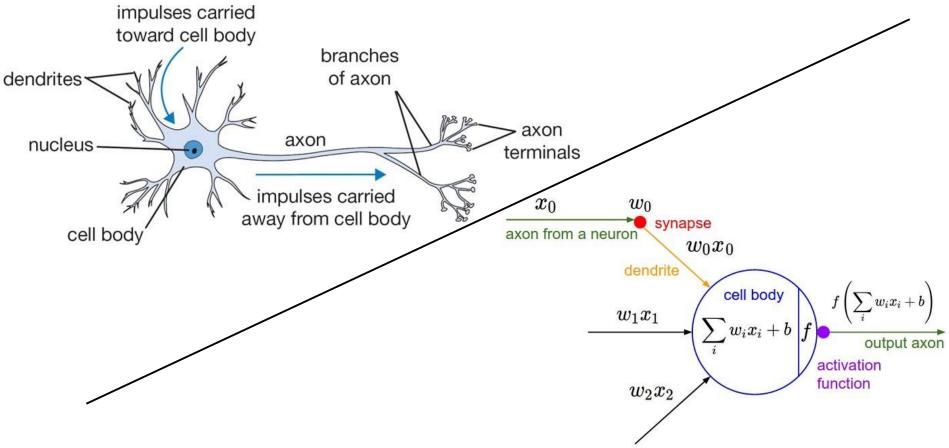
Second Loss Function: Hinge Loss


(or max-margin loss or Multi-class SVM loss)

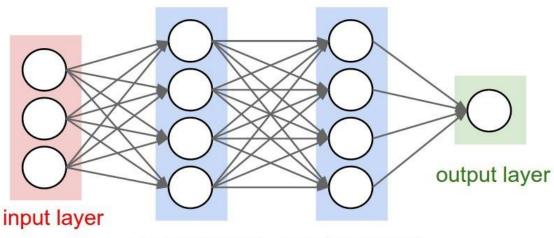
$$L_i = \sum_{j
eq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + extstyle{\Delta})$$
 e.g. 10

Example:
$$f(x_i,W) = [13,-7,11] \ y_i = 0$$

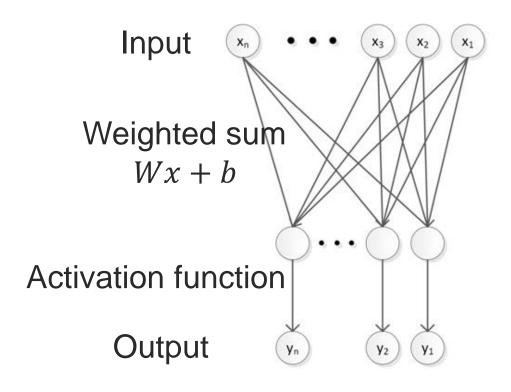
$$L_i = \max(0, -7 - 13 + 10) + \max(0, 11 - 13 + 10)$$


Two Loss Functions

Basic Concepts: Neural Networks


Neural Networks – inspiration

Made up of artificial neurons

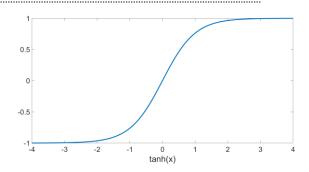

Neural Networks – score function

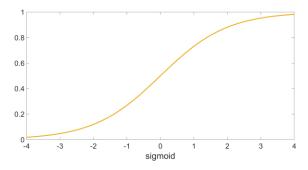
- Made up of artificial neurons
 - Linear function (dot product) followed by a nonlinear activation function
- Example a Multi Layer Perceptron

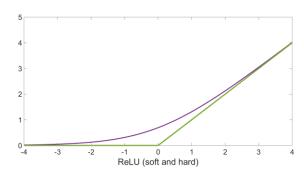
Basic NN building block

Weighted sum followed by an activation function

$$y = f(Wx + b)$$

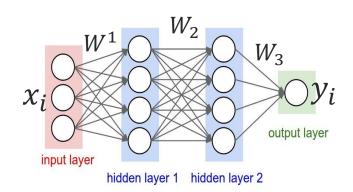

Neural Networks – activation function


•
$$f(x) = \tanh(x)$$


• Sigmoid -
$$f(x) = (1 + e^{-x})^{-1}$$

• Linear
$$-f(x) = ax + b$$

- ReLU $f(x) = \max(0, x) \sim \log(1 + \exp(x))$
 - Rectifier Linear Units
 - Faster training no gradient vanishing
 - Induces sparsity



Multi-Layer Feedforward Network

Activation functions (individual layers)

$$f_{1;W_1}(x) = \sigma(W_1 x + b_1)$$

$$f_{2;W_2}(x) = \sigma(W_2 x + b_2)$$

$$f_{3;W_3}(x) = \sigma(W_3 x + b_3)$$

Score function

$$y_i = f(x_i) = f_{3;W_3}(f_{2;W_2}(f_{1;W_1}(x_i)))$$

Loss function (e.g., Euclidean loss)

$$L_i = (f(x_i) - y_i)^2 = (f_{3;W_3}(f_{2;W_2}(f_{1;W_1}(x_i))))^2$$

Neural Networks inference and learning

- Inference (Testing)
 - Use the score function (y = f(x; W))
 - Have a trained model (parameters W)
- Learning model parameters (Training)
 - Loss function (L)
 - Gradient
 - Optimization