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Abstract. Large Convolutional Network models have recently demon-
strated impressive classification performance on the ImageNet bench-
mark Krizhevsky et al. [18]. However there is no clear understanding of
why they perform so well, or how they might be improved. In this paper
we explore both issues. We introduce a novel visualization technique that
gives insight into the function of intermediate feature layers and the oper-
ation of the classifier. Used in a diagnostic role, these visualizations allow
us to find model architectures that outperform Krizhevsky et al. on the
ImageNet classification benchmark. We also perform an ablation study
to discover the performance contribution from different model layers. We
show our ImageNet model generalizes well to other datasets: when the
softmax classifier is retrained, it convincingly beats the current state-of-
the-art results on Caltech-101 and Caltech-256 datasets.

1 Introduction

Since their introduction by LeCun et al. [20] in the early 1990’s, Convolutional
Networks (convnets) have demonstrated excellent performance at tasks such as
hand-written digit classification and face detection. In the last 18 months, sev-
eral papers have shown that they can also deliver outstanding performance on
more challenging visual classification tasks. Ciresan et al. [4] demonstrate state-of-
the-art performance on NORB and CIFAR-10 datasets. Most notably, Krizhevsky
et al. [18] show record beating performance on the ImageNet 2012 classification
benchmark, with their convnet model achieving an error rate of 16.4%, compared
to the 2nd place result of 26.1%. Following on from this work, Girshick et al. [10]
have shown leading detection performance on the PASCAL VOC dataset. Sev-
eral factors are responsible for this dramatic improvement in performance: (i) the
availability of much larger training sets, with millions of labeled examples; (ii)
powerful GPU implementations, making the training of very large models practi-
cal and (iii) better model regularization strategies, such as Dropout [14].
Despite this encouraging progress, there is still little insight into the internal
operation and behavior of these complex models, or how they achieve such good
performance. From a scientific standpoint, this is deeply unsatisfactory. With-
out clear understanding of how and why they work, the development of better
models is reduced to trial-and-error. In this paper we introduce a visualization
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technique that reveals the input stimuli that excite individual feature maps at
any layer in the model. It also allows us to observe the evolution of features
during training and to diagnose potential problems with the model. The visu-
alization technique we propose uses a multi-layered Deconvolutional Network
(deconvnet), as proposed by Zeiler et al. [29], to project the feature activations
back to the input pixel space. We also perform a sensitivity analysis of the clas-
sifier output by occluding portions of the input image, revealing which parts of
the scene are important for classification.

Using these tools, we start with the architecture of Krizhevsky et al. [18] and
explore different architectures, discovering ones that outperform their results
on ImageNet. We then explore the generalization ability of the model to other
datasets, just retraining the softmax classifier on top. As such, this is a form
of supervised pre-training, which contrasts with the unsupervised pre-training
methods popularized by Hinton et al. [13] and others [1,26].

1.1 Related Work

Visualization: Visualizing features to gain intuition about the network is com-
mon practice, but mostly limited to the 1st layer where projections to pixel
space are possible. In higher layers alternate methods must be used. [8] find the
optimal stimulus for each unit by performing gradient descent in image space
to maximize the unit’s activation. This requires a careful initialization and does
not give any information about the unit’s invariances. Motivated by the latter’s
short-coming, [19] (extending an idea by [2]) show how the Hessian of a given
unit may be computed numerically around the optimal response, giving some
insight into invariances. The problem is that for higher layers, the invariances are
extremely complex so are poorly captured by a simple quadratic approximation.
Our approach, by contrast, provides a non-parametric view of invariance, show-
ing which patterns from the training set activate the feature map. Our approach
is similar to contemporary work by Simonyan et al. [23] who demonstrate how
saliency maps can be obtained from a convnet by projecting back from the fully
connected layers of the network, instead of the convolutional features that we
use. Girshick et al. [10] show visualizations that identify patches within a dataset
that are responsible for strong activations at higher layers in the model. Our vi-
sualizations differ in that they are not just crops of input images, but rather
top-down projections that reveal structures within each patch that stimulate a
particular feature map.

Feature Generalization: Our demonstration of the generalization ability of
convnet features is also explored in concurrent work by Donahue et al. [7] and
Girshick et al. [10]. They use the convnet features to obtain state-of-the-art
performance on Caltech-101 and the Sun scenes dataset in the former case, and
for object detection on the PASCAL VOC dataset, in the latter.

2 Approach

We use standard fully supervised convnet models throughout the paper, as de-
fined by LeCun et al. [20] and Krizhevsky et al. [18]. These models map a color
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2D input image z;, via a series of layers, to a probability vector g; over the C' dif-
ferent classes. Each layer consists of (i) convolution of the previous layer output
(or, in the case of the 1st layer, the input image) with a set of learned filters; (ii)
passing the responses through a rectified linear function (relu(z) = max(z,0));
(iii) [optionally] max pooling over local neighborhoods and (iv) [optionally] a
local contrast operation that normalizes the responses across feature maps. For
more details of these operations, see [18] and [16]. The top few layers of the net-
work are conventional fully-connected networks and the final layer is a softmax
classifier. Fig. 3 shows the model used in many of our experiments.

We train these models using a large set of N labeled images {x, y}, where label
y; is a discrete variable indicating the true class. A cross-entropy loss function,
suitable for image classification, is used to compare g; and y;. The parameters
of the network (filters in the convolutional layers, weight matrices in the fully-
connected layers and biases) are trained by back-propagating the derivative of
the loss with respect to the parameters throughout the network, and updating
the parameters via stochastic gradient descent. Details of training are given in
Section 3.

2.1 Visualization with a Deconvnet

Understanding the operation of a convnet requires interpreting the feature activ-
ity in intermediate layers. We present a novel way to map these activities back to the
input pizel space, showing what input pattern originally caused a given activation
in the feature maps. We perform this mapping with a Deconvolutional Network
(deconvnet) Zeiler et al. [29]. A deconvnet can be thought of as a convnet model
that uses the same components (filtering, pooling) but in reverse, so instead of
mapping pixels to features does the opposite. In Zeiler et al. [29], deconvnets were
proposed as a way of performing unsupervised learning. Here, they are not used
in any learning capacity, just as a probe of an already trained convnet.

To examine a convnet, a deconvnet is attached to each of its layers, as illus-
trated in Fig. 1(top), providing a continuous path back to image pixels. To start,
an input image is presented to the convnet and features computed throughout
the layers. To examine a given convnet activation, we set all other activations in
the layer to zero and pass the feature maps as input to the attached deconvnet
layer. Then we successively (i) unpool, (ii) rectify and (iii) filter to reconstruct
the activity in the layer beneath that gave rise to the chosen activation. This is
then repeated until input pixel space is reached.

Unpooling: In the convnet, the max pooling operation is non-invertible, how-
ever we can obtain an approximate inverse by recording the locations of the
maxima within each pooling region in a set of switch variables. In the decon-
vnet, the unpooling operation uses these switches to place the reconstructions
from the layer above into appropriate locations, preserving the structure of the
stimulus. See Fig. 1(bottom) for an illustration of the procedure.

Rectification: The convnet uses relu non-linearities, which rectify the fea-
ture maps thus ensuring the feature maps are always positive. To obtain valid
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feature reconstructions at each layer (which also should be positive), we pass the
reconstructed signal through a relu non-linearity!.

Filtering: The convnet uses learned filters to convolve the feature maps from
the previous layer. To approximately invert this, the deconvnet uses transposed
versions of the same filters (as other autoencoder models, such as RBMs), but
applied to the rectified maps, not the output of the layer beneath. In practice
this means flipping each filter vertically and horizontally.

Note that we do not use any contrast normalization operations when in this
reconstruction path. Projecting down from higher layers uses the switch settings
generated by the max pooling in the convnet on the way up. As these switch
settings are peculiar to a given input image, the reconstruction obtained from a
single activation thus resembles a small piece of the original input image, with
structures weighted according to their contribution toward to the feature acti-
vation. Since the model is trained discriminatively, they implicitly show which
parts of the input image are discriminative. Note that these projections are not
samples from the model, since there is no generative process involved. The whole
procedure is similar to backpropping a single strong activation (rather than the
usual gradients), i.e. computing aa)?n’ where h is the element of the feature map
with the strong activation and X, is the input image. However, it differs in
that (i) the the relu is imposed independently and (ii) contrast normalization
operations are not used. A general shortcoming of our approach is that it only
visualizes a single activation, not the joint activity present in a layer. Neverthe-
less, as we show in Fig. 6, these visualizations are accurate representations of
the input pattern that stimulates the given feature map in the model: when the
parts of the original input image corresponding to the pattern are occluded, we
see a distinct drop in activity within the feature map.

3 Training Details

We now describe the large convnet model that will be visualized in Section 4.
The architecture, shown in Fig. 3, is similar to that used by Krizhevsky et al. [18]
for ImageNet classification. One difference is that the sparse connections used
in Krizhevsky’s layers 3,4,5 (due to the model being split across 2 GPUs) are
replaced with dense connections in our model. Other important differences re-
lating to layers 1 and 2 were made following inspection of the visualizations in
Fig. 5, as described in Section 4.1.

The model was trained on the ImageNet 2012 training set (1.3 million images,
spread over 1000 different classes) [6]. Each RGB image was preprocessed by resiz-
ing the smallest dimension to 256, cropping the center 256x256 region, subtract-
ing the per-pixel mean (across all images) and then using 10 different sub-crops
of size 224x224 (corners + center with(out) horizontal flips). Stochastic gradient
descent with a mini-batch size of 128 was used to update the parameters, starting
with a learning rate of 1072, in conjunction with a momentum term of 0.9. We

1 'We also tried rectifying using the binary mask imposed by the feed-forward relu
operation, but the resulting visualizations were significantly less clear.
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Fig. 1. Top: A deconvnet layer (left) attached to a convnet layer (right). The deconvnet
will reconstruct an approximate version of the convnet features from the layer beneath.
Bottom: An illustration of the unpooling operation in the deconvnet, using switches
which record the location of the local max in each pooling region (colored zones) during
pooling in the convnet. The black/white bars are negative/positive activations within
the feature map.

anneal the learning rate throughout training manually when the validation error
plateaus. Dropout [14] is used in the fully connected layers (6 and 7) with a rate
of 0.5. All weights are initialized to 10~2 and biases are set to 0.

Visualization of the first layer filters during training reveals that a few of
them dominate. To combat this, we renormalize each filter in the convolutional
layers whose RMS value exceeds a fixed radius of 107! to this fixed radius. This
is crucial, especially in the first layer of the model, where the input images are
roughly in the [-128,128] range. As in Krizhevsky et al. [18], we produce multiple
different crops and flips of each training example to boost training set size. We
stopped training after 70 epochs, which took around 12 days on a single GTX580
GPU, using an implementation based on [18].

4 Convnet Visualization

Using the model described in Section 3, we now use the deconvnet to visualize
the feature activations on the ImageNet validation set.

Feature Visualization: Fig. 2 shows feature visualizations from our model
once training is complete. For a given feature map, we show the top 9 acti-
vations, each projected separately down to pixel space, revealing the different
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structures that excite that map and showing its invariance to input deformations.
Alongside these visualizations we show the corresponding image patches. These
have greater variation than visualizations which solely focus on the discriminant
structure within each patch. For example, in layer 5, row 1, col 2, the patches
appear to have little in common, but the visualizations reveal that this particular
feature map focuses on the grass in the background, not the foreground objects.

The projections from each layer show the hierarchical nature of the features
in the network. Layer 2 responds to corners and other edge/color conjunctions.
Layer 3 has more complex invariances, capturing similar textures (e.g. mesh
patterns (Row 1, Col 1); text (R2,C4)). Layer 4 shows significant variation, and
is more class-specific: dog faces (R1,C1); bird’s legs (R4,C2). Layer 5 shows entire
objects with significant pose variation, e.g. keyboards (R1,C11) and dogs (R4).

Feature Evolution during Training: Fig. 4 visualizes the progression during
training of the strongest activation (across all training examples) within a given
feature map projected back to pixel space. Sudden jumps in appearance result
from a change in the image from which the strongest activation originates. The
lower layers of the model can be seen to converge within a few epochs. However,
the upper layers only develop develop after a considerable number of epochs
(40-50), demonstrating the need to let the models train until fully converged.

4.1 Architecture Selection

While visualization of a trained model gives insight into its operation, it can also
assist with selecting good architectures in the first place. By visualizing the first
and second layers of Krizhevsky et al. ’s architecture (Fig. 5(a) & (c)), various
problems are apparent. The first layer filters are a mix of extremely high and low
frequency information, with little coverage of the mid frequencies. Additionally,
the 2nd layer visualization shows aliasing artifacts caused by the large stride 4
used in the 1st layer convolutions. To remedy these problems, we (i) reduced the
1st layer filter size from 11x11 to 7x7 and (ii) made the stride of the convolution
2, rather than 4. This new architecture retains much more information in the
1st and 2nd layer features, as shown in Fig. 5(b) & (d). More importantly, it
also improves the classification performance as shown in Section 5.1.

4.2 Occlusion Sensitivity

With image classification approaches, a natural question is if the model is truly
identifying the location of the object in the image, or just using the surrounding
context. Fig. 6 attempts to answer this question by systematically occluding
different portions of the input image with a grey square, and monitoring the
output of the classifier. The examples clearly show the model is localizing the
objects within the scene, as the probability of the correct class drops significantly
when the object is occluded. Fig. 6 also shows visualizations from the strongest
feature map of the top convolution layer, in addition to activity in this map
(summed over spatial locations) as a function of occluder position. When the
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.
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Fig. 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with
3 color planes) is presented as the input. This is convolved with 96 different 1st layer
filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting
feature maps are then: (i) passed through a rectified linear function (not shown), (ii)
pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across
feature maps to give 96 different 55 by 55 element feature maps. Similar operations are
repeated in layers 2,3.4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions).
The final layer is a C-way softmax function, C' being the number of classes. All filters
and feature maps are square in shape.

Layer 1

Fig. 4. Evolution of a randomly chosen subset of model features through training.
Each layer’s features are displayed in a different block. Within each block, we show
a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualiza-
tion shows the strongest activation (across all training examples) for a given feature
map, projected down to pixel space using our deconvnet approach. Color contrast is
artificially enhanced and the figure is best viewed in electronic form.

occluder covers the image region that appears in the visualization, we see a
strong drop in activity in the feature map. This shows that the visualization
genuinely corresponds to the image structure that stimulates that feature map,
hence validating the other visualizations shown in Fig. 4 and Fig. 2.

5 Experiments

5.1 ImageNet 2012

This dataset consists of 1.3M/50k/100k training/validation/test examples,
spread over 1000 categories. Table 1 shows our results on this dataset.

Using the exact architecture specified in Krizhevsky et al. [18], we attempt to
replicate their result on the validation set. We achieve an error rate within 0.1%
of their reported value on the ImageNet 2012 validation set.

Next we analyze the performance of our model with the architectural changes
outlined in Section 4.1 (7 x 7 filters in layer 1 and stride 2 convolutions in layers
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Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The * indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test

Error % Top-1 Top-5 Top-5
Gunji et al. [12] - - 26.2
DeCAF [7] - - 192

Krizhevsky et al. [18], 1 convnet 40.7 182 ——
Krizhevsky et al. [18], 5 convnets 38.1 164 164
Krizhevsky et al. *[18], 1 convnets 39.0 16.6 ——
Krizhevsky et al. *[18], 7 convnets  36.7 154 15.3

Our replication of

Krizhevsky et al. , 1 convnet 40.5 181 ——
1 convnet as per Fig. 3 384 165 ——
5 convnets as per Fig. 3 — (a) 36.7 153 153

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps — (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8
Howard [15] - - 13.5
Clarifai [28] S S

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in
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Fig. 6. Three test examples where we systematically cover up different portions of the
scene with a gray square (1st column) and see how the top (layer 5) feature maps
((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each position of the
gray scale, we record the total activation in one layer 5 feature map (the one with the
strongest response in the unoccluded image). (c): a visualization of this feature map
projected down into the input image (black square), along with visualizations of this
map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area
in (b)). (d): a map of correct class probability, as a function of the position of the gray
square. E.g. when the dog’s face is obscured, the probability for “pomeranian” drops
significantly. (e): the most probable label as a function of occluder position. E.g. in
the 1st row, for most locations it is “pomeranian”, but if the dog’s face is obscured
but not the ball, then it predicts “tennis ball”. In the 2nd example, text on the car is
the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the
faces, but the classifier is sensitive to the dog (blue region in (d)), since it uses multiple
feature maps.

®True Label: Car Wheel |

True Label: Afghan Hound
i =t

the following, we refer to top-5 validation error). This is surprising, given that
they contain the majority of model parameters. Removing two of the middle
convolutional layers also makes a relatively small difference to the error rate.
However, removing both the middle convolution layers and the fully connected
layers yields a model with only 4 layers whose performance is dramatically worse.
This would suggest that the overall depth of the model is important for obtaining
good performance. We then modify our model, shown in Fig. 3. Changing the
size of the fully connected layers makes little difference to performance (same
for model of Krizhevsky et al. [18]). However, increasing the size of the middle
convolution layers goes give a useful gain in performance. But increasing these,
while also enlarging the fully connected layers results in over-fitting.
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Table 2. ImageNet 2012 classification error rates with various architectural changes
to the model of Krizhevsky et al. [18] and our model (see Fig. 3)

Train Val Val

Error % Top-1 Top-1 Top-5
Our replication of Krizhevsky et al. [18], 1 convnet 35.1 40.5 18.1
Removed layers 3,4 41.8 454 221
Removed layer 7 274 40.0 184
Removed layers 6,7 274 448 224
Removed layer 3,4,6,7 71.1 71.3 50.1
Adjust layers 6,7: 2048 units 40.3 41.7 18.8
Adjust layers 6,7: 8192 units 26.8 40.0 18.1
Our Model (as per Fig. 3) 33.1 384 16.5
Adjust layers 6,7: 2048 units 38.2 40.2 17.6
Adjust layers 6,7: 8192 units 22.0 388 17.0
Adjust layers 3,4,5: 512,1024,512 maps 18.8 37.5 16.0
Adjust layers 6,7: 8192 units and

Layers 3,4,5: 512,1024,512 maps 10.0 38.3 16.9

5.2 Feature Generalization

The experiments above show the importance of the convolutional part of our
ImageNet model in obtaining state-of-the-art performance. This is supported
by the visualizations of Fig. 2 which show the complex invariances learned in
the convolutional layers. We now explore the ability of these feature extraction
layers to generalize to other datasets, namely Caltech-101 [9], Caltech-256 [11]
and PASCAL VOC 2012. To do this, we keep layers 1-7 of our ImageNet-trained
model fixed and train a new softmax classifier on top (for the appropriate num-
ber of classes) using the training images of the new dataset. Since the softmax
contains relatively few parameters, it can be trained quickly from a relatively
small number of examples, as is the case for certain datasets.

The experiments compare our feature representation, obtained from Ima-
geNet, with the hand-crafted features used by other methods. In both our ap-
proach and existing ones the Caltech/PASCAL training data is only used to
train the classifier. As they are of similar complexity (ours: softmax, others: lin-
ear SVM), the feature representation is crucial to performance. It is important to
note that both representations were built using images beyond the Caltech and
PASCAL training sets. For example, the hyper-parameters in HOG descriptors
were determined through systematic experiments on a pedestrian dataset [5].

We also try a second strategy of training a model from scratch, i.e. resetting
layers 1-7 to random values and train them, as well as the softmax, on the
training images of the PASCAL/Caltech dataset.

One complication is that some of the Caltech datasets have some images
that are also in the ImageNet training data. Using normalized correlation, we
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identified these few “overlap” images? and removed them from our Imagenet
training set and then retrained our Imagenet models, so avoiding the possibility
of train/test contamination.

Caltech-101: We follow the procedure of [9] and randomly select 15 or 30 im-
ages per class for training and test on up to 50 images per class reporting the
average of the per-class accuracies in Table 3, using 5 train/test folds. Training
took 17 minutes for 30 images/class. The pre-trained model beats the best re-
ported result for 30 images/class from [3] by 2.2%. Our result agrees with the
recently published result of Donahue et al. [7], who obtain 86.1% accuracy (30
imgs/class). The convnet model trained from scratch however does terribly, only
achieving 46.5%, showing the impossibility of training a large convnet on such a
small dataset.

Table 3. Caltech-101 classification accuracy for our convnet models, against two lead-
ing alternate approaches

Acec % Acec %

# Train 15/class  30/class
Bo et al. [3] — 81.44+0.33
Yang et al. [17] 73.2 84.3
Non-pretrained convnet 228+ 1.5 46.5+£1.7

ImageNet-pretrained convnet 83.8 + 0.5 86.5 £ 0.5

Caltech-256: We follow the procedure of [11], selecting 15, 30, 45, or 60 training
images per class, reporting the average of the per-class accuracies in Table 4.
Our ImageNet-pretrained model beats the current state-of-the-art results ob-
tained by Bo et al. [3] by a significant margin: 74.2% vs 55.2% for 60 training
images/class. However, as with Caltech-101, the model trained from scratch does
poorly. In Fig. 7, we explore the “one-shot learning” [9] regime. With our pre-
trained model, just 6 Caltech-256 training images are needed to beat the leading
method using 10 times as many images. This shows the power of the ImageNet
feature extractor.

PASCAL 2012: We used the standard training and validation images to train
a 20-way softmax on top of the ImageNet-pretrained convnet. This is not ideal,
as PASCAL images can contain multiple objects and our model just provides
a single exclusive prediction for each image. Table 5 shows the results on the
test set, comparing to the leading methods: the top 2 entries in the competition
and concurrent work from Oquab et al. [21] who use a convnet with a more
appropriate classifier. The PASCAL and ImageNet images are quite different in
nature, the former being full scenes unlike the latter. This may explain our mean

2 For Caltech-101, we found 44 images in common (out of 9,144 total images), with a
maximum overlap of 10 for any given class. For Caltech-256, we found 243 images in
common (out of 30,607 total images), with a maximum overlap of 18 for any given
class.
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Table 4. Caltech 256 classification accuracies

Acc % Acc % Acc % Acc %

# Train 15/class  30/class  45/class  60/class
Sohn et al. [24] 35.1 42.1 45.7 47.9

Bo et al. [3] 40.5£04 48.0+0.2 51.9+£0.2 55.2+0.3
Non-pretr. 90+1.4 225+0.7 31.2+05 38.8+14

ImageNet-pretr. 65.7 0.2 70.6 0.2 72.7+ 0.4 74.2 £+ 0.3

—&— Our Model
—Bo etal
Sohn etal

16 2‘0 3‘0 4‘0 50 Gb

Training Images per—class
Fig. 7. Caltech-256 classification performance as the number of training images per
class is varied. Using only 6 training examples per class with our pre-trained feature
extractor, we surpass best reported result by Bo et al. [3].

Table 5. PASCAL 2012 classification results, comparing our Imagenet-pretrained con-
vnet against the leading two methods and the recent approach of Oquab et al. [21]

Acc % [22] [27] [21] Ours Acc % [22] [27] [21] Ouwurs
Airplane 92.0 97.3 94.6 96.0 Dining table 63.2 77.8 69.0 67.7
Bicycle 74.2 84.2 829 77.1 Dog 68.9 83.0 92.1 87.8
Bird 73.0 80.8 88.2 88.4 Horse 78.2 87.5 93.4 86.0
Boat 77.5 85.3 60.3 85.5 Motorbike 81.0 90.1 88.6 85.1
Bottle 54.3 60.8 60.3 55.8 Person 91.6 95.0 96.1 90.9
Bus 85.2 89.9 89.0 85.8 Potted plant 55.9 57.8 64.3 52.2
Car 81.9 86.8 84.4 78.6 Sheep 69.4 79.2 86.6 83.6
Cat 76.4 89.3 90.7 91.2 Sofa 65.4 73.4 62.3 61.1
Chair 65.2 75.4 72.1 65.0 Train 86.7 94.5 91.1 91.8
Cow 63.2 77.8 86.874.4 Tv 77.4 80.7 79.8 76.1
Mean  74.3 82.2 82.8 79.0 # won 0 11 6 3

performance being 3.2% lower than the leading competition result [27], however
we do beat them on 5 classes, sometimes by large margins.
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5.3 Feature Analysis

We explore how discriminative the features in each layer of our Imagenet-
pretrained model are. We do this by varying the number of layers retained from
the ImageNet model and place either a linear SVM or softmax classifier on
top. Table 6 shows results on Caltech-101 and Caltech-256. For both datasets,
a steady improvement can be seen as we ascend the model, with best results
being obtained by using all layers. This supports the premise that as the feature
hierarchies become deeper, they learn increasingly powerful features.

Table 6. Analysis of the discriminative information contained in each layer of feature
maps within our ImageNet-pretrained convnet. We train either a linear SVM or softmax
on features from different layers (as indicated in brackets) from the convnet. Higher
layers generally produce more discriminative features.

Cal-101 Cal-256
(30/class) (60/class)

SVM (1)  44.840.7 24.6+0.4
SVM (2)  66.2+0.5 39.6+0.3
SVM (3) 723404 46.0+0.3
SVM (4)  76.6+04 51.3+0.1
SVM (5)  86.2+0.8 65.6+0.3
SVM (7) 855+04 7T1.7+0.2

Softmax (5) 82.9+0.4 65.7+0.5
Softmax (7) 85.4+0.4 72.6 +0.1

6 Discussion

We explored large convolutional neural network models, trained for image clas-
sification, in a number ways. First, we presented a novel way to visualize the
activity within the model. This reveals the features to be far from random, un-
interpretable patterns. Rather, they show many intuitively desirable properties
such as compositionality, increasing invariance and class discrimination as we
ascend the layers. We also show how these visualization can be used to identify
problems with the model and so obtain better results, for example improving
on Krizhevsky et al. ’s [18] impressive ImageNet 2012 result. We then demon-
strated through a series of occlusion experiments that the model, while trained
for classification, is highly sensitive to local structure in the image and is not
just using broad scene context. An ablation study on the model revealed that
having a minimum depth to the network, rather than any individual section, is
vital to the model’s performance.

Finally, we showed how the ImageNet trained model can generalize well to
other datasets. For Caltech-101 and Caltech-256, the datasets are similar enough
that we can beat the best reported results, in the latter case by a significant
margin. Our convnet model generalized less well to the PASCAL data, perhaps
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suffering from dataset bias [25], although it was still within 3.2% of the best
reported result, despite no tuning for the task. For example, our performance
might improve if a different loss function was used that permitted multiple ob-
jects per image. This would naturally enable the networks to tackle the object
detection as well.

Acknowledgments. The authors would like to thank Yann LeCun for helpful
discussions and acknowledge support from NSERC, NSF grant #1116923 and
Microsoft Research.
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