
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.1: Convolutional 

Neural Networks

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Convolutional Neural networks

▪ Convolution kernels

▪ Convolution neural layers

▪ Pooling layers

▪ Convolutional architectures

▪ VGGNet and residual networks

▪ Class Activation Mapping (CAM)

▪ Region-based CNNs

▪ Sequential Modeling with convolutional networks



3

Administrative Stuff



Pre-proposals – Due tomorrow 9/11 

▪ Dataset and research problem

▪ Input modalities and multimodal challenges

▪ Initial research ideas

▪ Teammates and resources

Submit via Gradescope before 11:59pm ET



Upcoming Assignments

▪ Tuesday 9/10 (today): 

▪ Visualizing and Understanding Convolutional 

Networks

▪ Wednesday 9/11 (tomorrow)

▪ Pre-proposals

▪ Thursday 9/12: no reading assignment

▪ But presence to the course is expected

▪ Tuesday 9/17:

▪ Visualizing and Understanding Recurrent Networks



TA hours

Mondays 3-4:30pm

▪ Room GHC 5417 or GHC 6121 (to be confirmed)



Instructions for 1-page summaries

If you plan to be absent for a lecture:

▪ Please notify us by Piazza (private message)

▪ You should write a 1-page summary of the paper

▪ Instructions are on Piazza (resources)

▪ Submit your summary on Gradescope withing 7 

days of the absence day



8

Convolutional

Neural Networks



9

A Shortcoming of MLP

2 Data Points – detect which head is up!

Easily modeled using one neuron. 

What is the best neuron to model this? 

This head may or may not be up – what 

happened?

Solution: instead of modeling the entire image, 

model the important region.



Why not just use an MLP for images (1)?

▪ MLP connects each pixel in an image to each 

neuron

▪ Does not exploit redundancy in image structure

▪ Detecting edges, blobs

▪ Don’t need to treat the top left of image 

differently from the center

▪ Too many parameters 

▪ For a small 200 × 200 pixel RGB image the first 

matrix would have 120000 × 𝑛 parameters for 

the first layer alone



Why not just use an MLP for images (2)?

▪ Human visual system works in a filter 

fashion

▪ First the eyes detect edges and change 

in light intensity

▪ The visual cortex processing performs 

Gabor like filtering

▪ MLP does not exploit translation 

invariance

▪ MLP does not necessarily encourage 

visual abstraction



Why use Convolutional Neural Networks

▪ Using basic Multi Layer 

Perceptrons does not work 

well for images

▪ Intention to build more abstract 

representation as we go up 

every layer

Input pixels

Edges/blobs

Parts

Objects



Convolutional Neural Networks

▪ They are everywhere that uses representation learning with 

images

▪ State of the art results – object recognition, face recognition, 

segmentation, OCR, visual emotion recognition

▪ Extensively used for multimodal tasks as well



Main differences of CNN from MLP

▪ Addition of:

▪ Convolution layer

▪ Pooling layer

▪ Everything else is the same (loss, score and 

optimization)

▪ MLP layer is called Fully Connected layer



15

Convolution



Convolutional definition

▪ A basic mathematical operation (that given two 

functions returns a function)

(𝑓 ∗ 𝑔) 𝑛 ≝ ෍

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]

▪ Have a continuous and discrete versions (we 

focus on the latter)



Convolution in 1D

▪ Example

▪ 𝑓 = … , 0,1,1,1,0,0,…

▪ 𝑔 = … , 0,1,−1,0…

▪ 𝑓 ∗ 𝑔 = [… , 0,1,0,0, −1,0,0, … ]

(𝑓 ∗ 𝑔) 𝑛 ≝ ෍

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]



Convolution in practice

▪ In CNN we only consider functions with limited 

domain (not from −∞ to ∞)

▪ Also only consider fully defined (valid) version

▪ We have a signal of length N

▪ Kernel of length K

▪ Output will be length N − K + 1

▪ 𝑓 = 1,2,1 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [1,−1]



Convolution in practice

▪ If we want output to be different size we can add padding 

to the signal

▪ Just add 0s at the beginning and end

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1,1,−1,−1,0]

▪ Also have strided convolution (the filter jumps over pixels 

or signal)

▪ With stride 2

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1, −1,0]

▪ Why is this a good idea? Where can this fail?



Convolution in 2D

▪ Example of image and a kernel

∗ =

Convolution

kernel

Response map



Convolution in 2D

∗ =

Convolution

kernels

Response maps



Convolution intuition

▪ Correlation/correspondence 

between two signals

▪ Template matching

▪ Why are we interested in 

convolution

▪ Allows to extract structure from 

signal or image

▪ A very efficient operation on signals 

and images



Sample CNN convolution

▪ Great animated visualization of 2D convolution

▪ http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


24

Convolutional

Neural Layer



Fully connected layer

▪ Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



Convolution as MLP (1)

▪ Remove activation

Input

Weighted sum

𝑊𝑥 + 𝑏 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥 + 𝑏



Convolution as MLP (2)

▪ Remove redundant links making the matrix W sparse 

(optionally remove the bias term)

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



Convolution as MLP (3)

▪ We can also share the weights in matrix W not to do 

redundant computation

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



How do we do convolution in MLP recap

▪ Not a fully connected layer 

anymore

▪ Shared weights

▪ Same colour indicates same 

(shared) weight

𝒘𝟏 𝒘𝟐 𝒘𝟑

𝑊 =

𝑤1 𝑤2 𝑤3
0 𝑤1 𝑤2
0 0 𝑤1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
𝑤3 0 0
𝑤2 𝑤3 0
𝑤1 𝑤2 𝑤3



More on convolution

▪ Can expand this to 2D (or even 3D!)

▪ Just need to make sure to link the right 

pixel with the right weight

▪ Can expand to multi-channel 2D

▪ For RGB images

▪ Can expand to multiple kernels/filters

▪ Output is not a single image anymore, 

but a volume (sometimes called a 

feature map)

▪ Can be represented as a tensor (a 3D 

matrix)

▪ Usually also include a bias term and an 

activation



31

Pooling layer



Pooling layer

▪ Image subsampling



Pooling layer motivation

▪ Used for sub-sampling

▪ Allows summarization of response

▪ Helps with translational invariance

▪ Have filter size and stride (hyperparameters)



Pooling layer gradient

1. Record during forward pass which pixel was picked and 

use the same in backward pass

2. Pick the maximum value from input using a smooth and 

differentiable approximation

𝑦 =
σ𝑖=1
𝑛 𝑥𝑖𝑒

𝛼𝑥𝑖

σ𝑖=1
𝑛 𝑒𝛼𝑥𝑖



35

VGGNet and 

Residual Networks



Common architectures

▪ Start with a convolutional layer follow by non-

linear activation and pooling

▪ Repeat this several times

▪ Follow with a fully connected (MLP) layer



VGGNet model

▪ Used for object classification task

▪ 1000 way classification task – pick one

▪ 138 million params



38

VGGNet Convolution Kernels



39

VGGNet Response Maps (aka Activation Maps)

Convolution kernels (3x3)

Response Maps



Other architectures

▪ LeNet – an early 5 layer architecture for 

handwritten digit recognition

▪ DeepFace – Facebook’s face recognition CNN

▪ VGGFace – For face recognition (from VGG 

folks)

▪ AlexNet – Object Recognition

▪ Already trained models for object recognition 

can be found online



41

Residual Networks

▪ Adding residual connections

ResNet (He et al., 2015)

• Up to 152 layers!



42

Googlenet

▪ Using residual blocks

▪ Loss function in different layers of the 

network



43

Visualizing CNNs



44

Visualizing the Last CNN Layer: t-sne

Embed high dimensional data 

points (i.e. feature codes) so 

that pairwise distances are 

conserved in local 

neighborhoods. 

Alex Net



45

Deconvolution



46

Deconvolution



47

CAM: Class Activation Mapping [CVPR 2016]



48

Grad-CAM [ICCV 2017]



49

Region-based CNNs



50

Object recognition



51

Object Detection (and Segmentation)

Input image Detected Objects

One option: Sliding window

?



52

Object Detection (and Segmentation)

Input image Detected ObjectsRegion Proposals

A better option: Start by Identifying hundreds of region 

proposals and then apply our CNN object detector

How to efficiently identify region proposals?



53

Selective Search [Uijlings et al., IJCV 2013]

Image segmentation
(using superpixels)

And then merge 

similar regions

Create box 

region proposals



54

R-CNN [Girshick et al., CVPR 2014]

• Select ~2000 region proposals 

• Warp each region

• Apply CNN to each region

Fast R-CNN: Applies CNN only once, and then extracts regions

Time consuming!

Time consuming!

Faster R-CNN: Region selection on the Conv5 response map



55

Trade-off Between Speed and Accuracy

YOLO: You Only Look Once (CVPR 2016, 2017)

SSD: Single Shot MultiBox Detector (ECCV 2016) 



56

Mask R-CNN: Detection and Segmentation

(He et al., 2018)



57

Sequential Modeling 

with Convolutional 

Networks



58

Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)



59

3D CNN

Input as a 3D tensor

(stacking video images)

3D CNN

First layer with 3D kernels



Time-Delay Neural Network

1D Convolution

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks, 

SP87-100, Meeting of the Institute of Electrical, Information and Communication 

Engineers (IEICE), December, 1987,Tokyo, Japan.



61

Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Encoder

Decoder



Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling



63

Dilated TCN Models [Lea et al., CVPR 2017]


