

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.1: Convolutional Neural Networks

Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Convolutional Neural networks
 - Convolution kernels
 - Convolution neural layers
 - Pooling layers
- Convolutional architectures
 - VGGNet and residual networks
 - Class Activation Mapping (CAM)
 - Region-based CNNs
 - Sequential Modeling with convolutional networks

Administrative Stuff

Language Technologies Institute

Pre-proposals – Due tomorrow 9/11

- Dataset and research problem
- Input modalities and multimodal challenges
- Initial research ideas
- Teammates and resources

Submit via Gradescope before 11:59pm ET

Upcoming Assignments

- Tuesday 9/10 (today):
 - Visualizing and Understanding Convolutional Networks
- Wednesday 9/11 (tomorrow)
 - Pre-proposals
- Thursday 9/12: no reading assignment
 - But presence to the course is expected
- Tuesday 9/17:
 - Visualizing and Understanding Recurrent Networks

TA hours

Mondays 3-4:30pm

Room GHC 5417 or GHC 6121 (to be confirmed)

If you plan to be absent for a lecture:

- Please notify us by Piazza (private message)
- You should write a 1-page summary of the paper
- Instructions are on Piazza (resources)
- Submit your summary on Gradescope withing 7 days of the absence day

Convolutional Neural Networks

Language Technologies Institute

A Shortcoming of MLP

2 Data Points – detect which head is up! Easily modeled using one neuron. What is the best neuron to model this?

This head may or may not be up – what happened?

Solution: instead of modeling the entire image, model the important region.

Why not just use an MLP for images (1)?

- MLP connects each pixel in an image to each neuron
- Does not exploit redundancy in image structure
 - Detecting edges, blobs
 - Don't need to treat the top left of image differently from the center

- Too many parameters
 - For a small 200 × 200 pixel RGB image the first matrix would have 120000 × n parameters for the first layer alone

Why not just use an MLP for images (2)?

- Human visual system works in a filter fashion
 - First the eyes detect edges and change in light intensity
 - The visual cortex processing performs Gabor like filtering
- MLP does not exploit translation invariance
- MLP does not necessarily encourage visual abstraction

Why use Convolutional Neural Networks

- Using basic Multi Layer
 Perceptrons does not work
 well for images
- Intention to build more abstract representation as we go up every layer

Convolutional Neural Networks

- They are everywhere that uses representation learning with images
- State of the art results object recognition, face recognition, segmentation, OCR, visual emotion recognition
- Extensively used for multimodal tasks as well

Main differences of CNN from MLP

- Addition of:
 - Convolution layer
 - Pooling layer
- Everything else is the same (loss, score and optimization)
- MLP layer is called Fully Connected layer

Convolution

Language Technologies Institute

Convolutional definition

 A basic mathematical operation (that given two functions returns a function)

$$(f * g)[n] \stackrel{\text{\tiny def}}{=} \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$

Have a continuous and discrete versions (we focus on the latter)

Convolution in 1D

Convolution in practice

- In CNN we only consider functions with limited domain (not from −∞ to ∞)
- Also only consider fully defined (valid) version
 - We have a signal of length N
 - Kernel of length K
 - Output will be length N K + 1
- f = [1,2,1], g = [1,-1], f * g = [1,-1]

Convolution in practice

- If we want output to be different size we can add padding to the signal
 - Just add 0s at the beginning and end
- f = [0,0,1,2,1,0,0], g = [1,-1], f * g = [0,1,1,-1,-1,0]
- Also have strided convolution (the filter jumps over pixels or signal)
 - With stride 2
 - f = [0,0,1,2,1,0,0], g = [1,-1], f * g = [0,1,-1,0]
 - Why is this a good idea? Where can this fail?

Convolution in 2D

Example of image and a kernel

Convolution kernel

Response map

Convolution in 2D

Response maps

Convolution intuition

- Correlation/correspondence between two signals
 - Template matching
- Why are we interested in convolution
 - Allows to extract structure from signal or image
 - A very efficient operation on signals and images

Sample CNN convolution

- Great animated visualization of 2D convolution
- <u>http://cs231n.github.io/convolutional-networks/</u>

Input Volume (+pad 1) (7x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
x[:,:,0]	w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0 0 0 0 0 0 0	0 + -1	-1 0 1	0 6 6
0 2 2 1 1 0	0 0 0	1 -1 -1	-5 6 8
0 1 1 2 0 0 0	1 1 -1	0 0 1	-6 -7 -3
0 0 2 1 2 0 0	WO[.,:,1]	w1[:,:,1]	0[:,:,1]
0 0 2 2 2 1 0	-1 1 x	1 0 1	-6 -5 -2
0 1 2 1 0 1 0	1 -1	-1 -1 -1	-1 2 2
0 0 0 0 0 0 0	1 1 -1	0 -1 1	-3 3 -1
	w0[:,:/2]	w1[:,:,2]	
	0 7 0/	1 0 0	
0 0 0 0 0 0 0		1 0 1	
0 2 1 0 2 0 8		1 0 -1	
0 1 1 1 1 2 0	0 1 0	0 0 0	
0 1 2 1 0 1 0	Bias b0 (1x1x1)	Bias b1 (1x1x1)	
0 1 2 1 2 0 0	b0[····0]	b1[· · 0]	
		0	
0 2 0 2 1 /2 0	<u> </u>	•	
0 0 0 0 9 0 9 /			
x[:::2]	/		
0 0 0 0 0 0 0		toggie mov	rement
00000000			
0 0 9 2 2 7 2 0			
0 2 1 2 0 0 0			
0 1 1 1 0 0 0			
0 2 9 2 2 2 0			

0 1 2 0 1 2 0

Convolutional Neural Layer

Language Technologies Institute

Fully connected layer

Weighted sum followed by an activation function

Convolution as MLP (1)

Convolution as MLP (2)

 Remove redundant links making the matrix W sparse (optionally remove the bias term)

Convolution as MLP (3)

We can also share the weights in matrix W not to do redundant computation

How do we do convolution in MLP recap

- Not a fully connected layer anymore
- Shared weights
 - Same colour indicates same (shared) weight

More on convolution

- Can expand this to 2D (or even 3D!)
 - Just need to make sure to link the right pixel with the right weight
- Can expand to multi-channel 2D
 - For RGB images
- Can expand to multiple kernels/filters
 - Output is not a single image anymore, but a volume (sometimes called a feature map)
 - Can be represented as a tensor (a 3D matrix)
- Usually also include a bias term and an activation

Pooling layer

Language Technologies Institute

Pooling layer

Image subsampling

Pooling layer motivation

- Used for sub-sampling
 - Allows summarization of response
- Helps with translational invariance
- Have filter size and stride (hyperparameters)

Pooling layer gradient

1. Record during forward pass which pixel was picked and use the same in backward pass

2. Pick the maximum value from input using a smooth and differentiable approximation

VGGNet and Residual Networks

Language Technologies Institute

Common architectures

- Start with a convolutional layer follow by nonlinear activation and pooling
- Repeat this several times
- Follow with a fully connected (MLP) layer

VGGNet model

- Used for object classification task
 - 1000 way classification task pick one
 - 138 million params

VGGNet Convolution Kernels

VGGNet Response Maps (aka Activation Maps)

Language Technologies Institute

Other architectures

- LeNet an early 5 layer architecture for handwritten digit recognition
- DeepFace Facebook's face recognition CNN
- VGGFace For face recognition (from VGG folks)
- AlexNet Object Recognition
- Already trained models for object recognition can be found online

Residual Networks

Adding residual connections

ResNet (He et al., 2015)

• Up to 152 layers!

Googlenet

- Using residual blocks
 - Loss function in different layers of the network

Visualizing CNNs

Language Technologies Institute

Visualizing the Last CNN Layer: t-sne

Embed high dimensional data points (i.e. feature codes) so that pairwise distances are conserved in local neighborhoods.

Deconvolution

Deconvolution

CAM: Class Activation Mapping [CVPR 2016]

Grad-CAM [ICCV 2017]

Region-based CNNs

Language Technologies Institute

Object recognition

Object Detection (and Segmentation)

Input image

Detected Objects

One option: Sliding window

Object Detection (and Segmentation)

Input image

Region Proposals

Detected Objects

A better option: Start by Identifying hundreds of region proposals and then apply our CNN object detector

How to efficiently identify region proposals?

Selective Search [Uijlings et al., IJCV 2013]

R-CNN [Girshick et al., CVPR 2014]

- Warp each region
- Apply CNN to each region Time consuming!

Fast R-CNN: Applies CNN only once, and then extracts regions

Faster R-CNN: Region selection on the Conv5 response map

Trade-off Between Speed and Accuracy

YOLO: You Only Look Once (CVPR 2016, 2017) **SSD**: Single Shot MultiBox Detector (ECCV 2016)

Mask R-CNN: Detection and Segmentation

(He et al., 2018)

Sequential Modeling with Convolutional Networks

Language Technologies Institute

Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks (more about this on Thursday)

3D CNN

Input as a 3D tensor (stacking video images)

3D CNN

First layer with 3D kernels

Time-Delay Neural Network

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks, SP87-100, Meeting of the Institute of Electrical, Information and Communication Engineers (IEICE), December, 1987, Tokyo, Japan.

Language Technologies Institute

Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

RRRRRRRRRRR

Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling

Dilated TCN Models [Lea et al., CVPR 2017]

