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Lecture Objectives

= Convolutional Neural networks
= Convolution kernels
= Convolution neural layers
= Pooling layers
= Convolutional architectures
= VGGNet and residual networks
= (Class Activation Mapping (CAM)
= Region-based CNNs
= Sequential Modeling with convolutional networks
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Administrative Stuff
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Pre-proposals — Due tomorrow 9/11

= Dataset and research problem

= |[nput modalities and multimodal challenges
= [nitial research ideas

= Teammates and resources

Submit via Gradescope before 11:59pm ET
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Upcoming Assignments

= Tuesday 9/10 (today):

= Visualizing and Understanding Convolutional
Networks

= Wednesday 9/11 (tomorrow)
* Pre-proposals

* Thursday 9/12: no reading assignment
= But presence to the course is expected

= Tuesday 9/17:
= Visualizing and Understanding Recurrent Networks

Language Technologies Institute



TA hours

Mondays 3-4:30pm
* Room GHC 5417 or GHC 6121 (to be confirmed)
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Instructions for 1-page summaries

If you plan to be absent for a lecture:

* Please notify us by Piazza (private message)
= You should write a 1-page summary of the paper
= Instructions are on Piazza (resources)

= Submit your summary on Gradescope withing 7
days of the absence day
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Convolutional
Neural Networks
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A Shortcoming of MLP

2 Data Points — detect which head is up!
@ @ Easily modeled using one neuron.

What is the best neuron to model this?

This head may or may not be up — what
happened?

Solution: instead of modeling the entire image,
model the important region.
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Why not just use an MLP for images (1)?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure i Sl N 4 I J
= Detecting edges, blobs - ./ N
= Don’t need to treat the top left of image
differently from the center # ' / \\

= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone
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Why not just use an MLP for images (2)?

= Human visual system works in a filter
fashion
= First the eyes detect edges and change
in light intensity
» The visual cortex processing performs
Gabor like filtering

= MLP does not exploit translation
Invariance

= MLP does not necessarily encourage
visual abstraction
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Why use Convolutional Neural Networks

» Using basic Multi Layer
Perceptrons does not work
well for images

= |ntention to build more abstract
representation as we go up
every layer

Edges/blobs

Input pixels
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Convolutional Neural Networks

= They are everywhere that uses representation learning with
Images

= State of the art results — object recognition, face recognition,
segmentation, OCR, visual emotion recognition

= Extensively used for multimodal tasks as well
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Main differences of CNN from MLP

= Addition of:

= Convolution layer
= Pooling layer
= Everything else is the same (loss, score and
optimization)
= MLP layer is called Fully Connected layer
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Convolution
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Convolutional definition

= A basic mathematical operation (that given two
functions returns a function)

(f * 9)ln Zf m]

m=—oo
= Have a continuous and discrete versions (we
focus on the latter)
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Convolution in 1D

= Example
= £=1..,0,1,1,1,0,0,...]

s g=1[.,01,-1,0..]

* frg=1.,0100-100,..]

(gl = ) fimlgln—m)
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Convolution in practice

= In CNN we only consider functions with limited
domain (not from —oo to o)
= Also only consider fully defined (valid) version
= We have a signal of length N
= Kernel of length K
= Qutput will be length N - K+ 1

= f=1[121],g=1[1,-1], f g =[1,—1]
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Convolution in practice

= |f we want output to be different size we can add padding
to the signal
= Just add Os at the beginning and end

= £=100,012100],g=[1,-1], f+g =[0,1,1,-1,-1,0]

= Also have strided convolution (the filter jumps over pixels
or signal)
= With stride 2
= £=10,01,21,0,0],g =1[1,-1], f *g = [0,1,—1,0]
= Why is this a good idea? Where can this fail?
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Convolution in 2D

Convolution
kernel

Response map
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Convolution in 2D

Convolution
kernels

Response maps
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Convolution intuition
= Correlation/correspondence
between two signals

= Template matching
= Why are we interested In
convolution

= Allows to extract structure from
signal or image

= Avery efficient operation on signals
and images
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Sample CNN convolution

= Great animated visualization of 2D convolution
= http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

Convolutional
Neural Layer
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Fully connected layer

Input "'xz
Weighted sum %‘}}){{ (
Wx + b ."4: \\ J
PRI
Activation function " ) . . .
Output
) (e () ()

y=f(Wx+b)
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Convolution as MLP (1)

= Remove activation

Input '” <) (o
Weia/rl:ef ;um
.//\ §

1&.

& Kernel |wy |wy | Wy

y=Wx+b (n) () (n)(n
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Convolution as MLP (2)

Remove redundant links making the matrix W sparse
(optionally remove the bias term)

Input

Kernel |wy |wy | Wy
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Convolution as MLP (3)

= \We can also share the weights in matrix W not to do
redundant computation

Input

Weighted sum
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How do we do convolution in MLP recap

= Not a fully connected layer
anymore

= Shared weights
=  Same colour indicates same

(shared) weight
Wiy Wy W3 O 0 O
O wg w, -« 0 0 0 \
0 0 w 0 0 0

W = . *
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More on convolution

Can expand this to 2D (or even 3D!)

= Just need to make sure to link the right
pixel with the right weight

= Can expand to multi-channel 2D
= For RGB images
= Can expand to multiple kernels/filters

= Qutput is not a single image anymore,
but a volume (sometimes called a
feature map)

= Can be represented as a tensor (a 3D
matrix)

= Usually also include a bias term and an
activation
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Pooling layer
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Pooling layer

= Image subsampling

224x224x64 _ _
112511264 Single depth slice
ool Jl111]2]4
max pool with 2x2 filters
oMl 7 | 8 and stride 2 6 | 8
l T 3 | 2 [EimEG 3| 4
1 | 2 IS
224 . - 112
~8_ downsampling "
112 y
224
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Pooling layer motivation

= Used for sub-sampling
= Allows summarization of response

= Helps with translational invariance
= Have filter size and stride (hyperparameters)

g i Single depth slice
112x112x64 A
pool 11124
max pool with 2x2 filters
S5R6N 7 | 8 and stride 2 6 |8
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112
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Pooling layer gradient

1. Record during forward pass which pixel was picked and
use the same in backward pass

2. Pick the maximum value from input using a smooth and
differentiable approximation

n paX;
Softmax . Zl:lxle

y B Z?:l ea.X-l

0
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VGGNet and
Residual Networks

Language Technologies Institute



Common architectures

= Start with a convolutional layer follow by non-
Inear activation and pooling

= Repeat this several times
= Follow with a fully connected (MLP) layer

RELU RELU RELU RELU RELU RELU
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VGGNet model

» Used for object classification task
= 1000 way classification task — pick one
= 138 million params

224 224 x 3 234 x 224 x Gid

112 =112 = 128

L= D6 = 206
f 28 x 28 x 512 =T %512

Jﬁ“*ﬁ”ﬂ“ ﬁ]”l 1%1x4096 1% 1% 1000

B convolution4 RelLLT

A max pooling
fully connected4+Heal.l

| softmeax
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VGGNet Convolution Kernels

' _ Linearly
e [ e e 1 e
classifier

VGG-16 Convi 1
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VGGNet Response Maps (aka Activation Maps)

Convolution kernels (3x3)
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Other architectures

= LeNet — an early 5 layer architecture for
nandwritten digit recognition

» DeepFace — Facebook’s face recognition CNN

= VGGFace — For face recognition (from VGG
folks)

= AlexNet — Object Recognition

= Already trained models for object recognition
can be found online
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Residual Networks

= Adding residual connections

weight layer

lrelu

weight layer

ResNet (He et al., 2015)
 Upto 152 layers!
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Googlenet

» Using residual blocks

= Loss function in different layers of the
network
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Visualizing CNNs
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Visualizing the Last CNN Layer: t-sne

Alex Net

Embed high dimensional data

points (i.e. feature codes) so . pin
that pairwise distances are géfv?
conserved in local )
neighborhoods.
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Deconvolution

Layer Above

Reconstruction

“‘ Pooled Maps
-.-je
N
Max Locations
“Switches”

Pooling

‘&

‘ Unpooled Rectiﬁed‘ ‘
Maps Feature Maps “
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Deconvolution

Layer AbO\{e Pooled Maps
Reconstruction .
Switches
: Max Pooling
Max Unpooling {}
Unpooled Maps Rectified Feature Maps

Rectified Linear
Function

Rectified Linear
Function

Rectified Unpooled Maps

Feature Maps

Convolutional Convolutional
Filtering {F} Filtering {F}
Reconstruction Layer Below Pooled Maps
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CAM: Class Activation Mapping [CVPR 2016]
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Grad-CAM [iccv 2017]

Rectified Conv FC Layer
Feature Maps Activations

Input
RelLU

Cc | Tiger Cat

Grad-CAM
global average pooling
rm——
k= lEE 9 L¢ = ReLU E;lCAk
Y%= 7 Ak Grad-cAM — 1t€ Qy,
i g k
N~ N ~
gradients via backprop linear combination
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Region-based CNNs
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Object recognition

Input Image
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Object Detection (and Segmentation)

Input image DetectedObjectS

One option: Sliding window
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Object Detection (and Segmentation)

Input image Region Proposals DetectedObjects

A better option: Start by Identifying hundreds of region
proposals and then apply our CNN object detector

How to efficiently identify region proposals?

52
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Selective Search [Uijlings et al., IJCV 2013]

Image segmentation And then merge
(using superpixels) similar regions

Create box
region proposals
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R-CNN [Girshick et al., CVPR 2014]

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

» Select ~2000 region proposals =y Time consuming!
« Warp each region

* Apply CNN to each region mmms) Time consuming!

Fast R-CNN: Applies CNN only once, and then extracts regions

Faster R-CNN: Region selection on the Conv5 response map
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Trade-off Between Speed and Accuracy

C 80+
9 ] O y0[
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> O
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S
Q
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Frames Per Second

YOLO: You Only Look Once (CVPR 2016, 2017)
SSD: Single Shot MultiBox Detector (ECCV 2016)
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Mask R-CNN: Detection and Segmentation
(He et al., 2018)
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Sequential Modeling
with Convolutional
Networks
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Modeling Temporal and Sequential Data

[ lalelalo

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)
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3D CNN

Input as a 3D tensor
(stacking video images)

First layer with 3D kernels
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Time-Delay Neural Network

‘ 1D Convolution ‘—V
[ B

FCARCARCARA RN (FCARCA RN RN RN (RN BN

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks,
SP87-100, Meeting of the Institute of Electrical, Information and Communication
Engineers (IEICE), December, 1987,Tokyo, Japan.
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Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Predict: Y
Softmax

Conv

Decoder  weme

Conv

Upsample | hecoder

Encoder Fool
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Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions
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Higden Lawar
iation = 2

Hicdan Layer
[lation = 1

Input

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling
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Dilated TCN Models [Lea et al., CVPR 2017]

Predict: Y
Softmax
RelU A
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