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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.2: Recurrent Networks

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Sequential modeling with convolutional networks

▪ Word representations 
▪ Distributional hypothesis

▪ Learning neural representations 

▪ Language models and sequence modeling tasks

▪ Recurrent neural networks
▪ Gated recurrent neural networks

▪ Long Short-Term Memory (LSTM) model
▪ Multi-view LSTM

▪ Backpropagation through time
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Sequential Modeling 

with Convolutional 

Networks
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Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)
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3D CNN

Input as a 3D tensor

(stacking video images)

3D CNN

First layer with 3D kernels



Time-Delay Neural Network

1D Convolution

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks, 

SP87-100, Meeting of the Institute of Electrical, Information and Communication 

Engineers (IEICE), December, 1987,Tokyo, Japan.
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Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Encoder

Decoder



Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling
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Dilated TCN Models [Lea et al., CVPR 2017]
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Representing Words: 

Distributed Semantics
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▪ He handed her glass of bardiwac.

▪ Beef dishes are made to complement the bardiwacs.

▪ Nigel staggered to his feet, face flushed from too much
bardiwac.

▪ Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

▪ I dined off bread and cheese and this excellent bardiwac.

▪ The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

 bardiwac is a heavy red alcoholic beverage made from
grapes

What is the meaning of “bardiwac”?

11
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▪ Distribution Hypothesis (DH) [Lenci 2008]

▪ At least certain aspects of the meaning of lexical expressions
depend on their distributional properties in the linguistic contexts

▪ The degree of semantic similarity between two linguistic
expressions  and  is a function of the similarity of the linguistic
contexts in which  and  can appear

▪ Weak and strong DH

▪ Weak view as a quantitative method for semantic analysis and
lexical resource induction

▪ Strong view as a cognitive hypothesis about the form and origin of
semantic representations; assuming that word distributions in
context play a specific causal role in forming meaning
representations.

The Distributional Hypothesis

12



Geometric interpretation

▪ row vector xdog

describes usage of 

word dog in the 

corpus

▪ can be seen as 

coordinates of point 

in n-dimensional 

Euclidean space Rn

13
Stefan Evert 2010



Distance and similarity  

▪ illustrated for two 

dimensions: get and 

use: xdog = (115, 10)

▪ similarity = spatial 

proximity (Euclidean 

distance)

▪ location depends on 

frequency of noun 

(fdog  2.7 · fcat)

Stefan Evert 2010



Angle and similarity  

▪ direction more 

important than 

location

▪ normalise “length” 

||xdog|| of vector

▪ or use angle  as 

distance measure

Stefan Evert 2010





Semantic maps

16



17

Learning Neural 

Word Representations



How to learn neural word representations?

Distribution hypothesis: Approximate the 

word meaning by its surrounding words

Words used in a similar context will lie close together

He was walking away because …

He was running away because …

Instead of capturing co-occurrence counts directly, 

predict surrounding words of every word



x W1 W2 y

[0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0] [0; 1; 0; 0;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 1;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 1; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 0; 0; 0; 0;…; 0; 1]

walking

He was walking away because …

He was running away because …

He

Was

Away

because

No activation function -> very fast

How to learn neural word representations?

300d 300d

1
0

0
 0

0
0

d

1
0

0
 0

0
0

d

Word2vec algorithm: https://code.google.com/p/word2vec/



How to use these word representations

Classic NLP:

Walking:        [0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0]

Running:          [0; 0; 0; 0;….; 0; 0; 0; 0;…; 1; 0]

Goal:

Walking:         [0,1; 0,0003; 0;….; 0,02; 0.08; 0,05]

Running:        [0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

Similarity = 0.0

Similarity = 0.9

If we would have a vocabulary of 100 000 words:

100 000 dimensional vector

300 dimensional vector

x W1

300d

1
0
0
 0

0
0
d

Transform: x’=x*W



Vector space models of words

While learning these word representations, we are 

actually building a vector space in which all words 

reside with certain relationships between them

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Encodes both syntactic and semantic relationships

Why linear algebra is working?



Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words
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Language Sequence 

Modeling Tasks
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Sequence Modeling: Sequence Label Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?
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Sequence Modeling: Sequence Prediction

Part-of-speech ?
(noun, verb,…)

Prediction

Ideal for anyone with an interest in disguises

POS? POS? POS? POS? POS? POS? POS? POS?
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Sequence Modeling: Sequence Representation

Sequence representationLearning 

Ideal for anyone with an interest in disguises

[0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]
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Sequence Modeling: Language Model

Language ModelPrediction 

Ideal for anyone with

Next word?

an interest in disguises



Application: Speech Recognition
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Application: Language Generation

Generation

[0,1; 

0,0004; 

….; 

0.09; 

0,05]

Embedding

[0,1; 

0,0004; 

….; 

0.09; 

0,05]

Example: Image captioning



N-Gram Language Model Formulations

▪ Word sequences

▪ Chain rule of probability

▪ Bigram approximation

▪ N-gram approximation
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Evaluating Language Model: Perplexity

Perplexity is the inverse probability of 
the test set, normalized by the number 
of words:

Chain rule:

For bigrams:

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W ) = P(w1w2...wN )
-

1

N

           =
1

P(w1w2...wN )
N
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Challenges in Sequence Modeling

▪ Language Model

▪ Sentiment ?
(positive or negative)

▪ Part-of-speech ?
(noun, verb,…)

Main Challenges:

▪ Sequences of variable lengths (e.g., sentences)

▪ Keep the number of parameters at a minimum

▪ Take advantage of possible redundancy

▪ Sequence representation

Model



33

Recurrent Neural 

Networks
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Recurrent Neural Network

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙(𝑡))

Feedforward Neural Network
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Recurrent Neural Networks

𝑾

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =

𝑡

𝐿(𝑡)
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Recurrent Neural Networks - Unrolling

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

Same model parameters are used for all time parts.

𝐿 =

𝑡

𝐿(𝑡)



RNN-based Language Model

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

➢Models long-term information

P(next word is 

“dog”)
P(next word is 

“on”)
P(next word is 

“the”)
P(next word is 

“beach”)



RNN-based Sentence Generation (Decoder)

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “the”

➢Models long-term information

P(next word is 

“dog”)
P(next word is 

“on”)
P(next word is 

“the”)
P(next word is 

“beach”)

Context
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Sequence Modeling: Sequence Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?



RNN for Sequence Prediction

P(word is 

positive)

Ideal for anyone disguises

𝐿 =
1

𝑁


𝑡

𝐿(𝑡) =
1

𝑁


𝑡

−𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

P(word is 

positive)

P(word is 

positive)

P(word is 

positive)



RNN for Sequence Prediction

P(sequence is 

positive)

Ideal for anyone disguises

𝐿 = 𝐿(𝑁) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑁)|𝒛(𝑁))
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Sequence Modeling: Sequence Representation

Sequence representationLearning 

Ideal for anyone with an interest in disguises

[0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]



RNN for Sequence Representation

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

P(next word is 

“dog”)
P(next word is 

“on”)
P(next word is 

“the”)
P(next word is 

“beach”)



RNN for Sequence Representation (Encoder)

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “nice”

Sequence

Representation



RNN-based for Machine Translation 

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Le chien sur la plage The dog on the beach



Encoder-Decoder Architecture

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Context

What is the loss function?
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▪ Character-level “language models”
▪ Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level 

Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.org/pdf/1509.01626v2.pdf

▪ Skip-though: embedding at the sentence level
▪ Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. 

Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-

Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf

Related Topics

http://arxiv.org/pdf/1509.01626v2.pdf
http://arxiv.org/pdf/1506.06726v1.pdf
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Gated Recurrent 

Neural Networks
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Long-term Dependencies

Vanishing gradient problem for RNNs:

➢ The influence of a given input on the hidden layer, and therefore on 

the network output, either decays or blows up exponentially as it 

cycles around the network's recurrent connections. 

𝒉(𝑡)~𝑡𝑎𝑛ℎ(𝑾𝒉(𝑡−1))
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Recurrent Neural Networks

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒉(𝑡+1)
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LSTM ideas: (1) “Memory” Cell and Self Loop

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

Long Short-Term Memory (LSTM)

[Hochreiter and Schmidhuber, 1997]
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LSTM Ideas: (2) Input and Output Gates

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

Input gate

Output gate

sum

Self-

loop

[Hochreiter and Schmidhuber, 1997]



53

LSTM Ideas: (3) Forget Gate

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

xInput gate

Forget gate

Output gate

sum

[Gers et al., 2000]

𝒈
𝒊
𝒇
𝒐

=

𝑡𝑎𝑛ℎ
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚

𝑾 𝒉(𝑡)

𝒙(𝑡)

𝒊

𝒈

𝒇

𝒐

𝒄(𝑡) = 𝒇⨀𝒄 𝑡−1 + 𝒊⨀𝒈

𝒉(𝑡) = 𝒐⨀tanh(𝒄 𝑡 )
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Recurrent Neural Network using LSTM Units

𝒙(1)

𝒛(𝟏)

𝑽

𝑾

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

Gradient can still be computer using backpropagation!
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Bi-directional LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222
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Deep LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222
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Multimodal Sequence Modeling – Early Fusion

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)
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Multi-View Long Short-Term Memory (MV-LSTM)

𝒙𝟏

𝒚𝟏

MV-

LSTM(1)

MV-

LSTM(2)

MV-

LSTM(3)

MV-

LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Multi-View Long Short-Term Memory

MV-

LSTM(1)

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒉𝒕
(1)

𝒉𝒕
(2)

𝒉𝒕
(3)

MV-

tanh

MV-

sigm

𝒄𝒕
(1)

𝒄𝒕
(2)

𝒄𝒕
(3)

MV-

sigm

MV-

sigm

Multiple 
memory cells

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Topologies for Multi-View LSTM

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

MV-

tanh

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

Design parameters

α: Memory from 

current view

β: Memory from 

other views

View-specific

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=0

𝒈𝒕
(1)

Coupled
α=0, β=1

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

Fully-
connected

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=1

𝒈𝒕
(1)

Hybrid
α=2/3, β=1/3

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

MV-

LSTM(1)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Multi-View Long Short-Term Memory (MV-LSTM)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multimodal prediction of children engagement
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Backpropagation 

Through Time
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Optimization: Gradient Computation

𝒙

𝒉

𝑦𝛻𝒙 𝑦 =
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2
,
𝜕𝑦

𝜕𝑥3

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)
𝛻𝒙 𝑦 =

𝜕𝒉

𝜕𝒙

𝑇

𝛻𝒉 𝑦

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed 

using partial derivatives)
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Backpropagation Algorithm

Forward pass

▪ Following the graph topology, 

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix 

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)
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Recurrent Neural Networks

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =

𝑡

𝐿(𝑡)
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Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝜕𝐿

𝜕𝐿(𝑡)

𝐿 =

𝑡

𝐿(𝑡) = −

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x𝐿(𝑡)

𝒛(𝑡)
𝛻𝒛 𝑡 𝐿

𝑖

𝒉(𝜏) 𝛻𝒉 𝜏 𝐿 = 𝛻𝒛 𝜏 𝐿
𝜕𝑧(𝜏)

𝜕𝒉(𝜏)
= 𝛻𝒛 𝜏 𝐿𝑽

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧𝑖
𝑡 − 𝟏𝑖,𝑦(𝑡)

𝛻𝒉 𝑡 𝐿𝒉(𝑡+1)𝒉(𝑡)

𝐿(𝜏) or

or𝒛(𝜏)
=

𝜕𝐿

𝜕𝑧𝑖
(𝑡)

= 1

=
𝜕𝐿

𝜕𝐿(𝑡)
𝜕𝐿(𝑡)

𝜕𝑧𝑖
(𝑡)

= 𝛻𝒛 𝑡 𝐿
𝜕𝒐(𝑡)

𝜕𝒉(𝑡)
+ 𝛻𝒛 𝑡+1 𝐿

𝜕𝒉(𝑡+1)

𝜕𝒉(𝑡)
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Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝐿 =

𝑡

𝐿(𝑡) = −

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x

𝑽

𝑼

𝑾

𝑽 𝛻𝑽𝐿

𝑾 𝛻𝑾𝐿 =

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑾

𝑼 𝛻𝑼𝐿 =

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑼

=

𝑡

𝛻𝒛 𝑡 𝐿
𝜕𝒛(𝑡)

𝜕𝑽


