
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 3.2: Recurrent Networks

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

▪ Sequential modeling with convolutional networks

▪ Word representations
▪ Distributional hypothesis

▪ Learning neural representations

▪ Language models and sequence modeling tasks

▪ Recurrent neural networks
▪ Gated recurrent neural networks

▪ Long Short-Term Memory (LSTM) model
▪ Multi-view LSTM

▪ Backpropagation through time

3

Sequential Modeling

with Convolutional

Networks

4

Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)

5

3D CNN

Input as a 3D tensor

(stacking video images)

3D CNN

First layer with 3D kernels

Time-Delay Neural Network

1D Convolution

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks,

SP87-100, Meeting of the Institute of Electrical, Information and Communication

Engineers (IEICE), December, 1987,Tokyo, Japan.

7

Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Encoder

Decoder

Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling

9

Dilated TCN Models [Lea et al., CVPR 2017]

10

Representing Words:

Distributed Semantics

11

▪ He handed her glass of bardiwac.

▪ Beef dishes are made to complement the bardiwacs.

▪ Nigel staggered to his feet, face flushed from too much
bardiwac.

▪ Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

▪ I dined off bread and cheese and this excellent bardiwac.

▪ The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

 bardiwac is a heavy red alcoholic beverage made from
grapes

What is the meaning of “bardiwac”?

11

12

▪ Distribution Hypothesis (DH) [Lenci 2008]

▪ At least certain aspects of the meaning of lexical expressions
depend on their distributional properties in the linguistic contexts

▪ The degree of semantic similarity between two linguistic
expressions  and  is a function of the similarity of the linguistic
contexts in which  and  can appear

▪ Weak and strong DH

▪ Weak view as a quantitative method for semantic analysis and
lexical resource induction

▪ Strong view as a cognitive hypothesis about the form and origin of
semantic representations; assuming that word distributions in
context play a specific causal role in forming meaning
representations.

The Distributional Hypothesis

12

Geometric interpretation

▪ row vector xdog

describes usage of

word dog in the

corpus

▪ can be seen as

coordinates of point

in n-dimensional

Euclidean space Rn

13
Stefan Evert 2010

Distance and similarity

▪ illustrated for two

dimensions: get and

use: xdog = (115, 10)

▪ similarity = spatial

proximity (Euclidean

distance)

▪ location depends on

frequency of noun

(fdog  2.7 · fcat)

Stefan Evert 2010

Angle and similarity

▪ direction more

important than

location

▪ normalise “length”

||xdog|| of vector

▪ or use angle  as

distance measure

Stefan Evert 2010



Semantic maps

16

17

Learning Neural

Word Representations

How to learn neural word representations?

Distribution hypothesis: Approximate the

word meaning by its surrounding words

Words used in a similar context will lie close together

He was walking away because …

He was running away because …

Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

x W1 W2 y

[0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0] [0; 1; 0; 0;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 1;….; 0; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 1; 0; 0; 0;…; 0; 0]

[0; 0; 0; 0;….; 0; 0; 0; 0;…; 0; 1]

walking

He was walking away because …

He was running away because …

He

Was

Away

because

No activation function -> very fast

How to learn neural word representations?

300d 300d

1
0

0
 0

0
0

d

1
0

0
 0

0
0

d

Word2vec algorithm: https://code.google.com/p/word2vec/

How to use these word representations

Classic NLP:

Walking: [0; 0; 0; 0;….; 0; 0; 1; 0;…; 0; 0]

Running: [0; 0; 0; 0;….; 0; 0; 0; 0;…; 1; 0]

Goal:

Walking: [0,1; 0,0003; 0;….; 0,02; 0.08; 0,05]

Running: [0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

Similarity = 0.0

Similarity = 0.9

If we would have a vocabulary of 100 000 words:

100 000 dimensional vector

300 dimensional vector

x W1

300d

1
0
0
 0

0
0
d

Transform: x’=x*W

Vector space models of words

While learning these word representations, we are

actually building a vector space in which all words

reside with certain relationships between them

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Encodes both syntactic and semantic relationships

Why linear algebra is working?

Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words

23

Language Sequence

Modeling Tasks

24

Sequence Modeling: Sequence Label Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?

25

Sequence Modeling: Sequence Prediction

Part-of-speech ?
(noun, verb,…)

Prediction

Ideal for anyone with an interest in disguises

POS? POS? POS? POS? POS? POS? POS? POS?

26

Sequence Modeling: Sequence Representation

Sequence representationLearning

Ideal for anyone with an interest in disguises

[0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

27

Sequence Modeling: Language Model

Language ModelPrediction

Ideal for anyone with

Next word?

an interest in disguises

Application: Speech Recognition

)(

)()|(
maxarg

acousticsP

cewordsequenPcewordsequenacousticsP

cewordsequen



Language model

=)|(maxarg acousticscewordsequenP
cewordsequen

)()|(maxarg cewordsequenPcewordsequenacousticsP
cewordsequen



29

Application: Language Generation

Generation

[0,1;

0,0004;

….;

0.09;

0,05]

Embedding

[0,1;

0,0004;

….;

0.09;

0,05]

Example: Image captioning

N-Gram Language Model Formulations

▪ Word sequences

▪ Chain rule of probability

▪ Bigram approximation

▪ N-gram approximation

n

n www ...11 =

)|()|()...|()|()()(1

1

1

1

1

2

131211

−

=

−

== k
n

k

k

n

n

n wwPwwPwwPwwPwPwP

)|()(1

1

1

1

−

+−

=

=
k

Nk

n

k

k

n wwPwP

)|()(1

1

1 −

=

= k

n

k

k

n wwPwP

Evaluating Language Model: Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
-

1

N

 =
1

P(w1w2...wN)
N

32

Challenges in Sequence Modeling

▪ Language Model

▪ Sentiment ?
(positive or negative)

▪ Part-of-speech ?
(noun, verb,…)

Main Challenges:

▪ Sequences of variable lengths (e.g., sentences)

▪ Keep the number of parameters at a minimum

▪ Take advantage of possible redundancy

▪ Sequence representation

Model

33

Recurrent Neural

Networks

34

Recurrent Neural Network

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙(𝑡))

Feedforward Neural Network

35

Recurrent Neural Networks

𝑾

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)
𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =෍

𝑡

𝐿(𝑡)

36

Recurrent Neural Networks - Unrolling

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

Same model parameters are used for all time parts.

𝐿 =෍

𝑡

𝐿(𝑡)

RNN-based Language Model

1-of-N encoding

of “START”
1-of-N encoding

of “dog”

1-of-N encoding

of “on”
1-of-N encoding

of “nice”

➢Models long-term information

P(next word is

“dog”)
P(next word is

“on”)
P(next word is

“the”)
P(next word is

“beach”)

RNN-based Sentence Generation (Decoder)

1-of-N encoding

of “START”
1-of-N encoding

of “dog”

1-of-N encoding

of “on”
1-of-N encoding

of “the”

➢Models long-term information

P(next word is

“dog”)
P(next word is

“on”)
P(next word is

“the”)
P(next word is

“beach”)

Context

39

Sequence Modeling: Sequence Prediction

Sentiment ?
(positive or negative)

Prediction

Ideal for anyone with an interest in disguises

Sentiment label?

RNN for Sequence Prediction

P(word is

positive)

Ideal for anyone disguises

𝐿 =
1

𝑁
෍

𝑡

𝐿(𝑡) =
1

𝑁
෍

𝑡

−𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

P(word is

positive)

P(word is

positive)

P(word is

positive)

RNN for Sequence Prediction

P(sequence is

positive)

Ideal for anyone disguises

𝐿 = 𝐿(𝑁) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑁)|𝒛(𝑁))

42

Sequence Modeling: Sequence Representation

Sequence representationLearning

Ideal for anyone with an interest in disguises

[0,1; 0,0004; 0;….; 0,01; 0.09; 0,05]

RNN for Sequence Representation

1-of-N encoding

of “START”
1-of-N encoding

of “dog”

1-of-N encoding

of “on”
1-of-N encoding

of “nice”

P(next word is

“dog”)
P(next word is

“on”)
P(next word is

“the”)
P(next word is

“beach”)

RNN for Sequence Representation (Encoder)

1-of-N encoding

of “START”
1-of-N encoding

of “dog”

1-of-N encoding

of “on”
1-of-N encoding

of “nice”

Sequence

Representation

RNN-based for Machine Translation

1-of-N encoding

of “le”
1-of-N encoding

of “chien”

1-of-N encoding

of “la”
1-of-N encoding

of “plage”

1-of-N encoding

of “sur”

Le chien sur la plage The dog on the beach

Encoder-Decoder Architecture

1-of-N encoding

of “le”
1-of-N encoding

of “chien”

1-of-N encoding

of “la”
1-of-N encoding

of “plage”

1-of-N encoding

of “sur”

Context

What is the loss function?

47

▪ Character-level “language models”
▪ Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level

Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.org/pdf/1509.01626v2.pdf

▪ Skip-though: embedding at the sentence level
▪ Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.

Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-

Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf

Related Topics

http://arxiv.org/pdf/1509.01626v2.pdf
http://arxiv.org/pdf/1506.06726v1.pdf

48

Gated Recurrent

Neural Networks

49

Long-term Dependencies

Vanishing gradient problem for RNNs:

➢ The influence of a given input on the hidden layer, and therefore on

the network output, either decays or blows up exponentially as it

cycles around the network's recurrent connections.

𝒉(𝑡)~𝑡𝑎𝑛ℎ(𝑾𝒉(𝑡−1))

50

Recurrent Neural Networks

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)
𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒉(𝑡+1)

51

LSTM ideas: (1) “Memory” Cell and Self Loop

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

Long Short-Term Memory (LSTM)

[Hochreiter and Schmidhuber, 1997]

52

LSTM Ideas: (2) Input and Output Gates

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

Input gate

Output gate

sum

Self-

loop

[Hochreiter and Schmidhuber, 1997]

53

LSTM Ideas: (3) Forget Gate

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

Self-

𝒉(𝑡)

𝒙(𝑡)

tanh
+1

-1
𝒄(𝑡)
cell

Self-

loop

𝒉(𝑡+1)

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

𝒉(𝑡)

𝒙(𝑡)

sigmoid

+1

0

x

xInput gate

Forget gate

Output gate

sum

[Gers et al., 2000]

𝒈
𝒊
𝒇
𝒐

=

𝑡𝑎𝑛ℎ
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚

𝑾 𝒉(𝑡)

𝒙(𝑡)

𝒊

𝒈

𝒇

𝒐

𝒄(𝑡) = 𝒇⨀𝒄 𝑡−1 + 𝒊⨀𝒈

𝒉(𝑡) = 𝒐⨀tanh(𝒄 𝑡)

54

Recurrent Neural Network using LSTM Units

𝒙(1)

𝒛(𝟏)

𝑽

𝑾

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

Gradient can still be computer using backpropagation!

55

Bi-directional LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222

56

Deep LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222

57

Multimodal Sequence Modeling – Early Fusion

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)

58

Multi-View Long Short-Term Memory (MV-LSTM)

𝒙𝟏

𝒚𝟏

MV-

LSTM(1)

MV-

LSTM(2)

MV-

LSTM(3)

MV-

LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

59

Multi-View Long Short-Term Memory

MV-

LSTM(1)

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒉𝒕
(1)

𝒉𝒕
(2)

𝒉𝒕
(3)

MV-

tanh

MV-

sigm

𝒄𝒕
(1)

𝒄𝒕
(2)

𝒄𝒕
(3)

MV-

sigm

MV-

sigm

Multiple
memory cells

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

60

Topologies for Multi-View LSTM

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

MV-

tanh

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

Design parameters

α: Memory from

current view

β: Memory from

other views

View-specific

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=0

𝒈𝒕
(1)

Coupled
α=0, β=1

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

Fully-
connected

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=1

𝒈𝒕
(1)

Hybrid
α=2/3, β=1/3

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

MV-

LSTM(1)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

61

Multi-View Long Short-Term Memory (MV-LSTM)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multimodal prediction of children engagement

62

Backpropagation

Through Time

63

Optimization: Gradient Computation

𝒙

𝒉

𝑦𝛻𝒙 𝑦 =
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2
,
𝜕𝑦

𝜕𝑥3

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)
𝛻𝒙 𝑦 =

𝜕𝒉

𝜕𝒙

𝑇

𝛻𝒉 𝑦

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed

using partial derivatives)

64

Backpropagation Algorithm

Forward pass

▪ Following the graph topology,

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

65

Recurrent Neural Networks

𝒙(1)

𝒛(𝟏)

𝒉(1)
𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝒛(𝑡) = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉(𝑡), 𝑽)

𝐿(𝑡) = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = 𝑡𝑎𝑛ℎ(𝑼𝒙 𝑡 +𝑾𝒉(𝑡−1))

𝐿 =෍

𝑡

𝐿(𝑡)

66

Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝜕𝐿

𝜕𝐿(𝑡)

𝐿 =෍

𝑡

𝐿(𝑡) = −෍

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x𝐿(𝑡)

𝒛(𝑡)
𝛻𝒛 𝑡 𝐿

𝑖

𝒉(𝜏) 𝛻𝒉 𝜏 𝐿 = 𝛻𝒛 𝜏 𝐿
𝜕𝑧(𝜏)

𝜕𝒉(𝜏)
= 𝛻𝒛 𝜏 𝐿𝑽

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧𝑖
𝑡 − 𝟏𝑖,𝑦(𝑡)

𝛻𝒉 𝑡 𝐿𝒉(𝑡+1)𝒉(𝑡)

𝐿(𝜏) or

or𝒛(𝜏)
=

𝜕𝐿

𝜕𝑧𝑖
(𝑡)

= 1

=
𝜕𝐿

𝜕𝐿(𝑡)
𝜕𝐿(𝑡)

𝜕𝑧𝑖
(𝑡)

= 𝛻𝒛 𝑡 𝐿
𝜕𝒐(𝑡)

𝜕𝒉(𝑡)
+ 𝛻𝒛 𝑡+1 𝐿

𝜕𝒉(𝑡+1)

𝜕𝒉(𝑡)

67

Backpropagation Through Time

𝒙(𝜏)

𝒛(𝜏)

𝒉(𝜏)

𝐿(𝜏)

𝑦(𝜏)

𝐿 =෍

𝑡

𝐿(𝑡) = −෍

𝑡

𝑙𝑜𝑔𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

Gradient

“local” Jacobian

“backprop” gradient=

x

𝑽

𝑼

𝑾

𝑽 𝛻𝑽𝐿

𝑾 𝛻𝑾𝐿 =෍

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑾

𝑼 𝛻𝑼𝐿 =෍

𝑡

𝛻𝒉 𝑡 𝐿
𝜕𝒉(𝑡)

𝜕𝑼

=෍

𝑡

𝛻𝒛 𝑡 𝐿
𝜕𝒛(𝑡)

𝜕𝑽

