

Language Technologies Institute

Multimodal Machine Learning

Lecture 3.2: Recurrent Networks Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

Lecture Objectives

- Sequential modeling with convolutional networks
- Word representations
 - Distributional hypothesis
 - Learning neural representations
- Language models and sequence modeling tasks
- Recurrent neural networks
 - Gated recurrent neural networks
 - Long Short-Term Memory (LSTM) model
 - Multi-view LSTM
 - Backpropagation through time

Sequential Modeling with Convolutional Networks

Language Technologies Institute

Modeling Temporal and Sequential Data

How to represent a video sequence?

One option: Recurrent Neural Networks (more about this on Thursday)

3D CNN

Input as a 3D tensor (stacking video images)

3D CNN

First layer with 3D kernels

Time-Delay Neural Network

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks, SP87-100, Meeting of the Institute of Electrical, Information and Communication Engineers (IEICE), December, 1987, Tokyo, Japan.

Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

RRRRRRRRRRR

Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling

Dilated TCN Models [Lea et al., CVPR 2017]

Representing Words: Distributed Semantics

Language Technologies Institute

What is the meaning of "bardiwac"?

- He handed her glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- ⇒ bardiwac is a heavy red alcoholic beverage made from grapes

The Distributional Hypothesis

- Distribution Hypothesis (DH) [Lenci 2008]
 - At least certain aspects of the meaning of lexical expressions depend on their distributional properties in the linguistic contexts
 - The degree of semantic similarity between two linguistic expressions α and β is a function of the similarity of the linguistic contexts in which α and β can appear
- Weak and strong DH
 - Weak view as a quantitative method for semantic analysis and lexical resource induction
 - Strong view as a cognitive hypothesis about the form and origin of semantic representations; assuming that word distributions in context play a specific *causal role* in forming meaning representations.

Geometric interpretation

- row vector X_{dog} describes usage of word *dog* in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space Rⁿ

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

co-occurrence matrix M

Distance and similarity

- illustrated for two dimensions: get and use: X_{dog} = (115, 10)
- similarity = spatial proximity (Euclidean distance)

nse

■ location depends on frequency of noun $(f_{dog} \approx 2.7 \cdot f_{cat})$ Two dimensions of English V-Obj DSM

Angle and similarity

- direction more important than location
- normalise "length"
 ||x_{dog}|| of vector
- or use angle α as distance measure

Two dimensions of English V-Obj DSM

use

get

Semantic maps

Learning Neural Word Representations

Language Technologies Institute

How to learn neural word representations?

- Distribution hypothesis: Approximate the word meaning by its surrounding words
- Words used in a similar context will lie close together

Instead of capturing co-occurrence counts directly, predict surrounding words of every word

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t)$$

How to learn neural word representations?

Language Technologies Institute

How to use these word representations

If we would have a vocabulary of 100 000 words:

Vector space models of words

- While learning these word representations, we are actually building a vector space in which all words reside with certain relationships between them
- Encodes both syntactic and semantic relationships

This vector space allows for algebraic operations:

Vec(king) – vec(man) + vec(woman) ≈ vec(queen)

Why linear algebra is working?

Vector space models of words: semantic relationships

Trained on the Google news corpus with over 300 billion words

Language Sequence Modeling Tasks

Language Technologies Institute

Sequence Modeling: Sequence Label Prediction

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Sentiment ? (positive or negative)

Sequence Modeling: Sequence Prediction

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Part-of-speech ? (noun, verb,...)

Sequence Modeling: Sequence Representation

Sequence Modeling: Language Model

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Language Model

Application: Speech Recognition

arg max P(wordsequence | acoustics) = wordsequence

$$\underset{wordsequence}{\operatorname{arg\,max}} \frac{P(acoustics \mid wordsequence) \times P(wordsequence)}{P(acoustics)}$$

 $arg \max P(acoustics | wordsequence) \times P(wordsequence)$

wordsequence

Application: Language Generation

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

Example: Image captioning

N-Gram Language Model Formulations

- Word sequences $w_1^n = w_1 \dots w_n$
- Chain rule of probability $P(w_1^n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2)...P(w_n \mid w_1^{n-1}) = \prod_{k=1}^n P(w_k \mid w_1^{k-1})$
- Bigram approximation
 P(w₁ⁿ) = \product P(w_k | w_{k-1})
 N-gram approximation
 - $P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-N+1}^{k-1})$

Evaluating Language Model: Perplexity

The best language model is one that best predicts an unseen test set

Chain rule:

For bigrams:

• Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Challenges in Sequence Modeling

- Part-of-speech ? (noun, verb,...)
- Sentiment ? (positive or negative)
- Language Model
- Sequence representation

Main Challenges:

- Sequences of variable lengths (e.g., sentences)
- Keep the number of parameters at a minimum
- Take advantage of possible redundancy

Language Technologies Institute

Recurrent Neural Networks

Language Technologies Institute

Recurrent Neural Network

Feedforward Neural Network

Recurrent Neural Networks

Recurrent Neural Networks - Unrolling

Same model parameters are used for all time parts.

RNN-based Language Model

Models long-term information

RNN-based Sentence Generation (Decoder)

Models long-term information

Sequence Modeling: Sequence Prediction

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

Sentiment ? (positive or negative)

RNN for Sequence Prediction

$$L = \frac{1}{N} \sum_{t} L^{(t)} = \frac{1}{N} \sum_{t} -logP(Y = y^{(t)} | \mathbf{z}^{(t)})$$

RNN for Sequence Prediction

 $L = L^{(N)} = -logP(Y = y^{(N)} | \mathbf{z}^{(N)})$

Sequence Modeling: Sequence Representation

RNN for Sequence Representation

RNN for Sequence Representation (Encoder)

RNN-based for Machine Translation

Le chien sur la plage

The dog on the beach

Encoder-Decoder Architecture

Related Topics

- Character-level "language models"
 - Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.org/pdf/1509.01626v2.pdf

Skip-though: embedding at the sentence level

 Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf

Gated Recurrent Neural Networks

Language Technologies Institute

Long-term Dependencies

Vanishing gradient problem for RNNs:

The influence of a given input on the hidden layer, and therefore on the network output, either decays or blows up exponentially as it cycles around the network's recurrent connections.

49

Recurrent Neural Networks

LSTM ideas: (1) "Memory" Cell and Self Loop

[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

51 ogies Institute

LSTM Ideas: (2) Input and Output Gates

[Hochreiter and Schmidhuber, 1997]

Language Technologies Institute

LSTM Ideas: (3) Forget Gate [Gers et al., 2000]

Recurrent Neural Network using LSTM Units

Gradient can still be computer using backpropagation!

Bi-directional LSTM Network

Deep LSTM Network

Carnegie Mellon University

56

Multimodal Sequence Modeling – Early Fusion

Multi-View Long Short-Term Memory (MV-LSTM)

Multi-View Long Short-Term Memory

Topologies for Multi-View LSTM

Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

Class labels	Model	Precision	Recall	F1
Easy to engage	LSTM (Early fusion)	0.75	0.81	0.78
	MV-LSTM Full	0.81	0.81	0.81
	MV-LSTM Coupled	0.79	0.81	0.80
	MV-LSTM Hybrid	0.80	0.86	0.83
Difficult to engage	LSTM (Early fusion)	0.63	0.55	0.59
	MV-LSTM Full	0.68	0.68	0.68
	MV-LSTM Coupled	0.67	0.64	0.65
	MV-LSTM Hybrid	0.74	0.64	0.68

Backpropagation Through Time

Language Technologies Institute

Optimization: Gradient Computation

Vector representation:

Language Technologies Institute

Backpropagation Algorithm

Forward pass

 Following the graph topology, compute value of each unit

Backpropagation pass

- Initialize output gradient = 1
- Compute "local" Jacobian matrix using values from forward pass
- Use the chain rule:

```
Gradient = "local" Jacobian x
"backprop" gradient
```


Recurrent Neural Networks

Backpropagation Through Time

$$L = \sum_{t} L^{(t)} = -\sum_{t} log P(Y = y^{(t)} | z^{(t)})$$

$$(L^{(t)} \text{ or } L^{(t)}) \frac{\partial L}{\partial L^{(t)}} = 1$$

$$(T^{(t)} \text{ or } L^{(t)}) \frac{\partial L}{\partial L^{(t)}} = 1$$

$$(T^{(t)} \text{ or } Z^{(t)}) \frac{\partial L}{\partial L^{(t)}} = \frac{\partial L}{\partial z_{i}^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial z_{i}^{(t)}} = sigmoid(z_{i}^{t}) - \mathbf{1}_{i,y^{(t)}}$$

$$(T^{(t)} P_{h^{(t)}}L = P_{z^{(t)}}L \frac{\partial z^{(t)}}{\partial h^{(t)}} = P_{z^{(t)}}LV$$

$$(T^{(t)} P_{h^{(t)}}L = P_{z^{(t)}}L \frac{\partial o^{(t)}}{\partial h^{(t)}} + P_{z^{(t+1)}}L \frac{\partial h^{(t+1)}}{\partial h^{(t)}}$$

Language Technologies Institute

Carnegie Mellon University

 τ)

 $\mathbf{z}^{(\tau)}$

 $h^{(au)}$

 $\mathbf{x}^{(\tau)}$

Backpropagation Through Time

$$L = \sum_{t} L^{(t)} = -\sum_{t} log P(Y = y^{(t)} | \mathbf{z}^{(t)})$$

Gradient = "backprop" gradient
x "local" Jacobian

$$\bigcup \nabla_{\boldsymbol{U}} L = \sum_{t} (\nabla_{\boldsymbol{h}^{(t)}} L) \frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{U}}$$

