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Lecture Objectives

= Sequential modeling with convolutional networks

= Word representations
= Distributional hypothesis
= Learning neural representations
= Language models and sequence modeling tasks

= Recurrent neural networks

= Gated recurrent neural networks

= Long Short-Term Memory (LSTM) model
= Multi-view LSTM

= Backpropagation through time
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Sequential Modeling
with Convolutional
Networks
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Modeling Temporal and Sequential Data

EARA R A RN RN

How to represent a video sequence?

One option: Recurrent Neural Networks
(more about this on Thursday)
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3D CNN

Input as a 3D tensor
(stacking video images)

First layer with 3D kernels
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Time-Delay Neural Network

‘ 1D Convolution ‘—V
[ B

Sl el L]l el Ll ]2

Alexander Waibel, Phoneme Recognition Using Time-Delay Neural Networks,
SP87-100, Meeting of the Institute of Electrical, Information and Communication
Engineers (IEICE), December, 1987,Tokyo, Japan.
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Temporal Convolution Network (TCN) [Lea et al., CVPR 2017]

Predict: Y
Softmax

Conv
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Dilated TCN Model [Lea et al., CVPR 2017]

Dilated Convolutions
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Higden Lawar
iation = 2

Hicdan Layer
[lation = 1

Input

Dilation of 4: Step size of 4 when convoluting

+ Skip connections to help with deep modeling
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Dilated TCN Models [Lea et al., CVPR 2017]
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Representing Words:
Distributed Semantics
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What is the meaning of “bardiwac”?

= He handed her glass of bardiwac.
= Beef dishes are made to complement the bardiwacs.

= Nigel staggered to his feet, face flushed from too much
bardiwac.

= Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

= | dined off bread and cheese and this excellent bardiwac.

= The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

— bardiwac is a heavy red alcoholic beverage made from
grapes
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The Distributional Hypothesis

= Distribution Hypothesis (DH) [Lenci 2008]

= At least certain aspects of the meaning of lexical expressions
depend on their distributional properties in the linguistic contexts

= The degree of semantic similarity between two linguistic
expressions a and B is a function of the similarity of the linguistic
contexts in which o and B can appear

= Weak and strong DH

= Weak view as a quantitative method for semantic analysis and
lexical resource induction

= Strong view as a cognitive hypothesis about the form and origin of
semantic representations; assuming that word distributions in
context play a specific causal role in forming meaning
representations.
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Geometric interpretation

" row vector Xdog get | see | use | hear | eat | Kkill
describes usage of knife | 51 | 20 | 84 | 0 | 3 | 0
word dog in the cat [ 52 [ 58] 4 | 4 6|26
Corpus dog | 1151 83 | 10 | 42 | 33 | 17

boat | 59 | 39 | 23 4 0 0

= can be seen as cpl 8118161 2 1110
coordinates of point pig { 12 )17 ] 5 ] 2 al
in n-dimensional banana | 11 | 2 2 0 181 0

Euclidean space R" :
co-occurrence matrix M
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Distance and similarity

Two dimensions of English V=0bj DSM

= jllustrated for two S -
dimensions: get and s |
USe: Xgoq = (115, 10) knite
= similarity = spatial "
.. . 2 o
proximity (Euclidean = 8 ~
distance) o
= |ocation depends on boat
frequency of noun & 7 cate;&dag
(fdog ~ 2.7 1:cat) ° | —2 | | |

0 20 40 60 80 100 120

get
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Angle and similarity

Two dimensions of English V=Obj DSM

120
|

= direction more
Important than
location

100
|

knife

= normalise “length”
|[Xg0g]| OF Vector

Uuse

= Oruse angle a as

distance measure dog

>e

[ I [
80 100 120
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Semantic maps
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Learning Neural
Word Representations
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How to learn neural word representations?

mm) Distribution hypothesis: Approximate the
word meaning by its surrounding words

m) \Words used in a similar context will lie close together

(AN ™

He was|walking [away because ...
He was|running laway because ...

— Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

T
% > Y. logp(wyyluw)

t=1 —c<j<c,j#0
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How to learn neural word representations?

No activation function -> very fast

- He
b 8 Was
walking S S
3 Away
because
300d 300d
[0;0;0;0;....;0; 0; 1; 0;...; 0; O] [0;1;0;0;....;0; 0; 0; 0;...; 0; O]

%\ [0; 0; 0; 1;....; 0; 0; 0; 0;...; 0; 0]
He was|walking [away because ... [0; 0; 0; 0;....;1; 0; 0; 0;...; 0; O]

He was]|running|laway because ... [0;0; 0;0;....; 0, 0; 0; 0;...; 0; 1]
Word2vec algorithm: https://code.google.com/p/word2vec/
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How to use these word representations

If we would have a vocabulary of 100 000 words:

Classic NLP: _ 100 000 dimensional vector 4
Walking: [0;0;0;0;....;0;0; 1; 0;...; 0; O]
Running: [0;0;0;0;....;0;0; 0; 0;...; 1; 0]

100 000d

# Similarity = 0.0

l Transform: x'=x*W

Goal: ) 300 dimensional vector R 2004
Walking: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,05]

Running: [0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

# Similarity = 0.9

&
<
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Vector space models of words

# While learning these word representations, we are
actually building a vector space in which all words
reside with certain relationships between them

# Encodes both syntactic and semantic relationships

‘ This vector space allows for algebraic operations:

Vec(king) — vec(man) + vec(woman) = vec(queen)

[ Why linear algebra is working? ]
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Vector space models of words: semantic relationships

2 T T - T T T
China«
*Beijing
15 F Russia« 1
Japarx
1k Moscow |
Turkey Ankara  okyo
0.5 1
Poland:
0r Germxem]ﬁ -
France Warsaw
w —HBerlin
05 F |tal‘f‘< Paris .
#Athens
Greecet ®
-1+ Spairx Rome |
# Sadrid
-1.5 | Portugal sLisbon -
_2 1 1 1 1 1 1 |
-2 1.5 1 0.5 0 0.5 1 1.5 2

Trained on the Google news corpus with over 300 billion words
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Language Seguence
Modeling Tasks
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Seguence Modeling: Sequence Label Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
4 A\

[ N N D D A

Ideal for anyone with an Interest in disguises
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Seqguence Modeling: Sequence Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction Part-of-speech ?
disguises who likes to see the subject '

) (noun, verb,...)
tackled in a humourous manner.

0 of 4 people found this review helpful

POS? POS? POS? POS? POS? POS? POS? POS?

[ N N D D A

Ideal for anyone with an Interest in disguises
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Seqguence Modeling: Sequence Representation

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning i
disguises who likes to see the subject ﬁ Sequence representatlon

tackled in a humourous manner.

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
4 A\

[ N N D D A

Ideal for anyone with an Interest in disguises
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Sequence Modeling: Language Model

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject Language Model
tackled in a humourous manner.

0 of 4 people found this review helpful

Next word?

A
4 A

I

ldeal for anyone with

Language Technologies Institute




Application: Speech Recognition

arg max P(wordsequence | acoustics) =

wordsequence
arg max P(acoustics | wordsequence) x P(wordsequence)
wordsequence P(aCOUStiCS)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

Language model
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Application: Language Generation

Embedding
[0,1;
0,0004; .
_ Generation Ideal for anyone with an interest in
T disguises who likes to see the subject
0.09; tackled in a humourous manner.
0,05]

Example: Image captioning

[0,1;

0’0004’ ﬁ The man at bat readies to swing at the
ey pitch while the umpire looks on.
0.09;

0,05]
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N-Gram Language Model Formulations

= Word sequences
W, =W,...W,
= Chain rule of probability n
P(W) = P(wW,)P(W, [w,)P(w, [wy)...P(w, [w™) =] [ P(w, [w™)
= Bigram approximation -
P(w;') = HP(Wklwk 1)
= N-gram apprOX|mat|on
P(w;') = HP(Wk | Wi N

Language Technologies Institute



Evaluating Language Model: Perplexity

The best language model is one that best predicts an unseen test set
* Gives the highest P(sentence)

Perplexity is the inverse probability of %
the test set, normalized by the number PP(W) = P(wyw,..wy)
of words:

o —
Pwyw,...wy)
Chain rule: .

PP(W) = V¥ :
P P(wilwy...wi—1)

For bigrams:
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Challenges in Sequence Modeling

=  Part-of-speech ?
T Yr  Masterfull (noun,ve}?b,...)

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in . Sentlment ? _
disguises who likes to see the subject (positive or negative)
tackled in a humourous manner.

0 of 4 people found this review helpful " Language MOdel

=  Sequence representation

Main Challenges:

= Sequences of variable lengths (e.g., sentences)
= Keep the number of parameters at a minimum

= Take advantage of possible redundancy
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Recurrent Neural
Networks
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Recurrent Neural Network

Feedforward Neural Network

@ L® = —logP(Y = y]z(D)
@ @ z®® = matmult(h®, V)

a @ h® = tanh(Ux®)
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Recurrent Neural Networks
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Recurrent Neural Networks - Unrolling

L = EL(t)
t

@ L® = —logP(Y = y]z(D)

3
@ @ z®® = matmult(h®, V) 25 703

a h ;h(Z)\ »[h(3)

h® = tanh(Ux™) + Wh=1)

& @ @

Same model parameters are used for all time parts.

36
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RNN-based Language Model

P(nextwordis  P(nextwordis  P(nextwordis  P(nextword is
“dog”)

“the”) “‘beach”)

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

%
Q\:#

» Models long-term information



RNN-based Sentence Generation (Decoder)

P(nextwordis  P(nextwordis  P(nextwordis  P(nextword is

“dog”) on”) “the”) “beach”)
1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START" of “dog” of “on” of “the”

Context

T
QZIQ

» Models long-term information



Seqguence Modeling: Sequence Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
4 A\

[ N N D D A

Ideal for anyone with an Interest in disguises
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RNN for Sequence Prediction

P(word is P(word is P(word is
positive) positive) positive)

Ideal for anyone

1 1
L= NZ L = NZ —logP(Y = y®|z®)

SR

P(word is
positive)

disguises



RNN for Sequence Prediction

P(sequence is
positive)

b gl e

ey |

?
=_>

Ideal for anyone disguises

L =LWN) = —logP(Y = y(N)lz(N))



Seqguence Modeling: Sequence Representation

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning i
disguises who likes to see the subject ﬁ Sequence representatlon

tackled in a humourous manner.

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
4 A\

[ N N D D A

Ideal for anyone with an Interest in disguises
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RNN for Sequence Representation

P(nextwordis  P(nextwordis  P(nextwordis  P(nextword is
“dog”)

“the”) “‘beach”)

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

+
wzw




RNN for Sequence Representation (Encoder)

Sequence
Representation

E@E&i} — 3

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”




RNN-based for Machine Translation

Le chien sur la plage =) The dog on the beach

ZMEQ -\-NII — 3

1-of-N encoding 1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”




Encoder-Decoder Architecture

Context




Related Topics

= Character-level “language models”

= Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level
Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.org/pdf/1509.01626v?2.pdf

= Skip-though: embedding at the sentence level

* Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.
Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-
Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf

Language Technologies Institute


http://arxiv.org/pdf/1509.01626v2.pdf
http://arxiv.org/pdf/1506.06726v1.pdf

Gated Recurrent
Neural Networks
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Long-term Dependencies

Vanishing gradient problem for RNNSs:

h®~tanh(Wh®—D)
Qutputs
Hidden
Layer
|nputs
Time 1 2 3 4 5 6 7

» The influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it
cycles around the network's recurrent connections.
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Recurrent Neural Networks
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LSTM ideas: (1) “Memory” Cell and Self Loop
[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

1 Lo n
h ) ®
_/ » C > R(TD)
© -1 cell
X

( ) Self-
loop
[]
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LSTM Ideas: (2) Input and Output Gates
[Hochreiter and Schmidhuber, 1997]

sigmoid

N €
S x® 0_/Output gate
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LSTM ldeas:

(3) Forget Gate [Gers et al., 2000]

g tanh
i | _[sigm h®
f | | sigm ( x@®
o sigm

)

C(t) — f@c(t_l) + i@g
h® = o®tanh(c®)

sigmoid
h(t)\ ) f
x(® 0_/Forget gate

sigmoid

0

\\\ h( t )\ .}1-
“\\ x(t) 0

Output gate
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Recurrent Neural Network using LSTM Units

SENG

vV

2P C
} a

4

z(é

LSTM® o LSTM® o LSTM® fersessessens — LSTM®

/N

Gradient can still be computer using backpropagation!

54
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Bi-directional LSTM Network

T Ty T
\ A} a

| %4

LSTMY fs

el

LSTM(ll)

LSTM(S) «

of

[]

A 4

LSTMl(Z)

LSTM(S)

[}

\ 4

LSTMf‘*)

A

LSTM(ZT)

[/

(7)
LSTM N

TE 6 & &
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Deep LSTM Network

A} y

z(é

V
LSTMY o LSTM®) | LSTM) frrsssssesses — LSTMY)
LSTM® o LSTM® o LSTME) ferssssssses —{ LSTM®
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Multimodal Sequence Modeling — Early Fusion

IR A S ¢

LSTM > LSTM, o LSTM_g) freeereeesee: — LSTM,

CRCRCS
& & &
CRCRS
CRCRE
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Multi-View Long Short-Term Memory (MV-LSTM)

MV- | Mv- | oMv- e M-
LSTM(l) > LSTM(z) D LSTM(S) """""" — LSTM(T)
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Multi-View Long Short-Term Memory

| Multi-view topologies

| AL "
1 t 1)
MV- Hey L M- » U > c,éz) :O .| fi
tanh
LSTM, 20 o T L Mk g(ts) I Ct 3 K
3 3
MV-
R (1 g sigm
| e Input gate
@ |-
X
:3) o
sigm
i Forget gate -
| MV-
sigm
Output gate -
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Topologies for Multi-View LSTM

MV-
LSTM,

Multi-view topologies mmp View-specific

a=1, B=0

1) l XD ey D
MV- 2

Language Technologies Institute

Fully-
=) onnected
a=1, =1

m) Hybrid

a=2/3, 3—1/3
e

h(l) //V'\',
7/

(1)

h(2) .7 s

4

h(3) 7




Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

Class labels Model Precision | Recall | F'1

Easy to engage LSTM (Early fusion) | 0.75 0.81 |0.78
MV-LSTM Full 0.81 0.81 |0.81
MV-LSTM Coupled |0.79 0.81 ]0.80
MV-LSTM Hybrid | 0.80 0.86 |0.83

Difficult to engage | LSTM (Early fusion) |0.63 0.55 |0.59
MV-LSTM Full 0.68 0.68 |0.68
MV-LSTM Coupled | 0.67 0.64 |0.65
MV-LSTM Hybrid  0.74 0.64 |0.68
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Backpropagation
Through Time
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Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
3 T
\ oh h) h=g(x)
V,y = a Vi v (
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)
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Backpropagation Algorithm

Forward pass —logP(Y = y|z)

| (cross-entropy)
= Following the graph topology,
compute value of each unit matmult(h,, W)
2, ¥V 3
Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient
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Recurrent Neural Networks

L = EL(t)
t

@ L® = —logP(Y = y]z(D)

@ @ z®® = matmult(h®, V)

a
a i

h o (2)

h® = tanh(Ux® + WhE-1 \\T/

© ©
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Backpropagation Through Time

L= 2 L® = _Z logP(Y = y®|z®)
t t
Gradient ="backprop” gradient @

@ @ LD X “local” Jacobian

oL oL oL®

@or@ (Vz(t)l‘) Py (t) aLO 5, (t) —SlngLd(Zt)—lly(t) @ @

VA,

do(®) dh(t+1)
Viol = V, oL PYAG + V., e+ L Th® @
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Backpropagation Through Time

L= 2 L® = _Z logP(Y = y®|z®)
t t

Gradient ="backprop” gradient
X “local” Jacobian

i?zz(t)
@ wi= Y0
t
oh®
@ Vwl = z(Vth)

oh®
@ VyL = z(thL)
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