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Objectives of today’s class

= Unsupervised representation learning
= Restricted Boltzmann Machines
= Autoencoders
= Deep Belief Nets, Stacked autoencoders

= Multi-modal representations
= Coordinated vs. joint representations
= Multimodal Deep Boltzmann Machines
= Deep Multimodal autoencoders
= Tensor Fusion representation
= Low-rank fusion representations
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Administrative Stuff
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Upcoming Schedule

= First project assignment:
= Proposal presentation (10/1 and 10/3)
= First project report (Sunday 10/6)

= Midterm project assignment
= Midterm presentations (11/5 and 11/7)
= Midterm report (Sunday 11/10)

= Final project assignment

* Final presentation (12/3 & 12/5)
* Final report (Sunday 12/8)
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Proposal Presentation

5 minutes (about 5-8 slides)
= All team members should be involved in the presentation

Wil receive feedback from instructors and other students

= 1-2 minutes between presentations reserved for written
feedback

= Main presentation points
= Research problem and motivation
=  Prior work
= New research ideas

*= You need to submit a copy of your slides (PDF or PPT)
= Deadline: Friday 10/4 (on Gradescope)
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Project Proposal Report

= Part 1 (updated version of your pre-proposal)

= [ntroduction:
= Describe and motivate the research problem
= Define in generic terms the main computational
challenges
= Experimental Setup:

= Describe the dataset(s) you are planning to use for this
project.

= Describe the input modalities and annotations available in
this dataset.
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Project Proposal Report

= Part 2

= Related Work:

* |nclude 12-15 paper citations which give an overview of
the prior work

= Present in more details the 3-4 research papers most
related to your work
* New Research Ideas

= Describe your specific challenges and/or research
hypotheses

= Highlight the novel aspect of your proposed research
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Project Proposal Report

= Part3

= Language Modality Exploration:
= Explore neural language models on your dataset (e.g., using Keras)

= Train at least two different language models (e.g., using SimpleRNN,
GRU or LSTM) on your dataset and compare their perplexity.

» |nclude qualitative examples of successes and failure cases.

= Visual Modality Exploration:
= Explore pre-trained Convolutional Neural Networks (CNNs) on your
dataset

= Load a pre-existing CNN model trained for object recognition (e.g.,
VGG-Net) and process your test images.

= Visualize the visual representations (using t-sne visualization) with
overlaid class labels with different colors.
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Unsupervised
representation learning
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Unsupervised learning

= We have accessto X = {x, x5, ..., X, } and not
Y ={y1, Y2, ¥n}
= Why would we want to tackle such a task
= 1. Extracting interesting information from data
= Clustering

= Discovering interesting trends
= Data compression

= 2. Learn better representations
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Unsupervised representation learning

» Force our representations to better model input
distribution
= Not just extracting features for classification

= Asking the model to be good at representing the data
and not overfitting to a particular task

= Potentially allowing for better generalizability
= Use for Initialization of supervised task,

especially when we have a lot of unlabeled data
and much less labeled examples
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Restricted Boltzmann
Machines
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Restricted Boltzmann Machine (RBM)

= Undirected Graphical Model
= A generative rather than discriminative model
= Connections from every hidden unit to every visible one

= No connections across units (hence Restricted), makes it
easier to train and do inference on

@ @ P @ Hidden layer

<

(x)) (x3) o o o (xy Visiblelayer
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Restricted Boltzmann Machine (RBM)

(x, h: 6) exp(—E(x, h; 8))
X, N, — rtition
P S 3 exp(—E(xX', I 0)) — pmesion ;

= Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

= Model parameters 8 = {W, b, a}
E=—-—xWh — bx —ah
E=—-22; xihj—Zibixi—‘Zjajhj @ OOO Hidden

| ' J ‘ V ’ Y J layer

Interaction Bias terms }‘ .

term @ @ Visible
e 00
layer
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Boltzmann Machine

exp(—E(x, h; 0))

> 2 exp(—E(x', h'; 0))
Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

p(x, h;0) =
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Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

exp(—E(h;0)/kT)
2 exp(—E(R’; 0) /KT)

» probability distribution that gives the probability
that a system will be in a certain state h

p(h; 6) =

E(h; 0): Energy of state h
k: Boltzmann constant
T: Thermodynamic temperature
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RBM inference (have a trained 0)

Hidden layer a

= [For inference
@ e o
. p(h] = 1|x; 0) — G(Zixiwij + Clj), @ @ @

. p(xl = 1|h, 6) = O'(Z] h]WU + bl) }4 o : W
= derived from the joint probability
definition (x)) (x;) o o o (x)
= Conditional inference is easy and of Visible layer b

sigmoidal form

=  Given a trained model 8 and an observed
value x can easily infer h

= Given a trained model 8 and an hidden
layer value h can easily infer x

= Need to sample as we get probabilities
rather than values
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RBM training (learning the 0)

Want to have a model that leads to good likelihood of training data
First express the data likelihood (through marginal probability):

2 —E(x,h;0) = _ :
= p(x;0) = hexp(z X ) Z zxzhexp( E(x, h; 9))

Want to optimize:
= argming [Zt —log (p(x(t); 6))] where t is a data sample
= sum across all samples

= minimizing negative log likelihood instead of maximizing the likelihood

To Approximate computation of model term using Contrastive
Divergence
= Based on Markov Chain Monte Carlo (Gibbs) sampling

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]
See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEqguations for more details
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http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations

RBM extensions

= So far have only modeled binary input and hidden states

= Gaussian-Bernoulli RBM allows for real value modeling
= Changes the inference and training only very slightly

= Visible units are modeled as real values (under a Gaussian
distribution), but hidden units are still binary

= Only requires a small change in some of the equations

= Can also introduce sparsity in hidden layers (sometimes
helps)
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Examples of what the model learns
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Deep Restricted Boltzmann Machines (DBMs)

= Can stack RBMs together to lead do
deep versions of them

= The visible layer can be binary, Gaussian
or Bernoulli

= Training fully end to end is very difficult
= Greedy layer-wise training O O O @ o o

O
= Combine the RBMs layer by layer
O O O L O 2nd Hidden layer
O
O

34 Hidden layer

1st Hidden layer

OOO . o
OOOO T

Visible layer
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Deep Belief Networks (DBN)

= To make it easier used Deep Belief
Networks
=  Actually came before Deep RBMs
=  Simplifies model training
= Turn the undirected model to

directed one, making the interaction
simpler

For more details see

Language Technologies Institute
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34 Hidden layer

2"d Hidden layer
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Autoencoders
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Autoencoders — an alternative to RBM

= What does auto mean?
= Greek for self — self encoding -

» Feed forward network @@ ° e °@

iIntended to reproduce the Decoder— I
iInput

g
= Two parts encoder/decoder @@° ¢ °@

= x = f(g(x))— score function Encoder — f 1

. 7 decoder CICEERC

W
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Autoencoders

Mostly follows Neural Network structure
=  Typically a matrix multiplication followed

by a nonlinearity (e.g sigmoid) @ @ ® o o @

= Activation will depend on type of x

= Sigmoid for binary g=0W*h) g I
» Linear for real valued f
= Often we use tied weights to force the @ @° ° e @
sharing of weights in encoder/decoder feowx) f 1
= wr=w" f
= word2vec is actually a bit similar to an @ @ ® o °@

autoencoder (except for the auto part)

Language Technologies Institute



Loss function

= Any differentiable similarity function
= Cross-entropy for binary x

= L ==Yl log(xs) + (1 —x;) log(1 — x'i))

= Euclidean for real valued x
= L= %Zk(xk —x'1)?
= Cosine similarity etc.
= Depends on the data being modeled

@)@ -+ @)

\
\
\
\
\

9
@@o ® 0@ :) Loss

|

@ - GF
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Learning

= To learn the model parameters (W*, W), we

use back-propagation Error
* |n case of Euclidean (with linear act) and ]
Cross-entropy (with sigmoid act), we just @ @ e °@
have (x' — x) error to propagate I
= |f we're using tied weights, gradients need J 7
to be summed (like back propagation o o o
through time in RNN) @ @ @
= Can use batch/stochastic gradient descent f 1

as before @@ . O@
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Denoising autoencoder

= Simple idea
= Add noise to input x but
learn to reconstruct original

= | eads to a more robust
representation and prevents

copying
» Learns what the relationship
IS to represent a certain x

» Different noise added during
each epoch
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Autoencoder vs denoising autoencoder

= MNIST data (as before)

¥
— {
[ 19

bt é& Neuron A (0%, 10%, 20%, 50% corruption IIIII
ll-- R DEENEREZEENE ZDEESarsllRErEE

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)

Qualitatively denoising autoencoder leads to more meaningful features




Stacked autoencoders

= Can stack autoencoders as
well

= Each encoding unit has a
corresponding decoder

= As before, inference is
feedforward, but now with
more hidden layers

Decoder ™

Encoder ==
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation

Dec

Enc
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation
= Map from all x’s to hy's

= Discard decoder for now
= Train the second layer

= Learnto encode h to h, and to
decode h, from h4 Enc

= Repeat for as many layers

Dec
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer —

= Learnto encode xto h; and to X
decode x from h4
= Use backpropagation Decoder h,
= Map from all x’s to hy’s 1

= Discard decoder for now

= Train the second layer —

= Learnto encode h to h, and to
decode h, from h4

= Repeat for as many layers

» Reconstruct using previously learned
decoders mappings

= Fine-tune the full network end-to-end

Encodern

X
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Stacked denoising autoencoders

= Can extend thisto a
denoising model -

= Add noise when training
each of the layers Decoder

= Often with increasing
amount of noise per layer

= (0.1 for first, 0.2 for second,
0.3 for third

Encodern
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Deep representations

e . Decoder

= \What can we do with them?

= Compression
= Can work better than PCA

2000

i

.....................................

I

Pretraining Unrolling Fine-tuning
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Deep representations

What can we do with them?

Compression
= Can work better than PCA

Discarding the decoder and using the ~Classifier y

middle layer as a representation

* Finetuning the autoencoder for a task - [ eos ]hz
Encoder = [ *ee J h
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Multimodal
representations
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Multimodal representations

= \What do we want from multi-modal
representation Predicton

= Similarity in that space implies
similarity in corresponding concepts

= Useful for various discriminative Fancy

representation

tasks — retrieval, mapping, fusion
etc.

= Possible to obtain in absence of one
or more modalities

= Fill in missing modalities given
others (map between modalities)

Fancy

Modality 1 representation

Modality 2
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Core Challenge: Multimodal Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations:

Representation

Modality 1 Modality 2
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Joint Multimodal Representation

_ _ Tensed voice
Joint Representation

(Multimodal Space)

Language Technologies Institute



Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 =P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2
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Unsupervised
Joint representations
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Shallow multimodal representations

= \Want deep multimodal representations
= Shallow representations do not capture complex relationships
= Often shared layer only maps to the shared section directly

Shared Representation Shared Representation

(0000 ¢+0000 0000]| [OOO0 244000 0000

! |
(00 000 00:00 +2+ 00| [00 060 0000 ¢0+ OO

Audio Input Video Input Audio Input Video Input

Shallow RBM Shallow Autoencoder
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Deep Multimodal autoencoders

= A deep representation
learning approach
= A bimodal auto-encoder

= Used for Audio-visual speech
recognition

Audio Reconstruction

Video Reconstruction

00 sss OO0

00 «es OO

T

T

00+ 00|

.
J

00+ 00

\/Shared

[O O e OO ] Representation

00 +++ 00

00+ 00

T

T

00 sss OO0

00 +++ 00 |

Audio Input

Video Input
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Deep Multimodal autoencoders - training

= |ndividual modalities can be
pre-trained

= Denoising Autoencoders

= To train the model to
reconstruct the other modality
= Use both
= Remove audio

Audio Reconstruction

Video Reconstruction

00+« 00 (00 +++ 00|
oy
00:- 00| (00--:00

\/Shared

[O O e OO ] Representation

@ e 0] (0000
f
WO | (004 00
Audio Input Video Input
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Deep Multimodal autoencoders - training

| I N d |V| d u al Mo d al |t| es can b - Audio Reconstruction  Video Reconstruction

pretrained 00 T 00) ©© T 20
= RBMs 00:-00] (00--:00

= Denoising Autoencoders \/g'h d
are

[O O e OO ] Representation

= To train the model to

. (00 00] @y )0
reconstruct the other modality — 5
= Use both 00+« 00| (OW O
Audio Input Video Input

= Remove audio
= Remove video
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Deep Multimodal autoencoders

N Shared

= Can now discard the decoder and 00 +++ 00 Jrepresenston
use it for the AVSR task /\

. . 00+ 00| (00:.+00]
= |nteresting experiment ¥ f
= “Hearing to see” (00 +e¢ 00 | [OO---OO]
Audio Input Video Input
Linear Classifier > Superyised
E Testing
Shared Shared
Representation ' ' Representation
joosens ’ —
Audio Video
Training Testing
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Deep Multimodal Boltzmann machines

=  Generative model

= |ndividual modalities trained like a
DBN

= Multimodal representation trained Joint Representation
using Variational approaches

= Used for image tagging and cross-
media retrieval h @
m

= Reconstruction of one modality from
another is a bit more “natural” than in
autoencoder representation hn

= Can actually sample text and images

WO w.(D

t
B (OO0
v A
m A A A A A
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Deep Multimodal Boltzmann machines

= Pre-training on unlabeled g G Grmesgs MR 2t oowen
data helps 2

pentax, k10d, beach, sea,
kangarooisland, ~ surf, strand,

southaustralia, ~ shore, wave, :ca et}lr:r;,yhiglllreen
sa, australia, seascape, Cieide '
. australiansealion, sand, ocean,
3001
= Can use generative models moe
night, lights,
christmas, flower, nature,
<no text> nightshot, green, flowers,
Inacht, nuit,notte, petal, petals, bud
longexposure,
Model MAP Prec@50 noche, noctuma
portrait, bw,
! blackandwhite,
Random 0.124 0.124 ::rearzén"?:f o blue, rid,art. ;
i g people, faces, artwork, painted,
SVM (Huiskes et al., 2010) 0.475 0.758 el e
LDA (Huiskes et al., 2010) 0.492 0.754 persan, man gl
DBM 0.526 £ 0.007  0.791 % 0.008 -

DBM (using unlabelled data) 0.585 + 0.004 0.836 £ 0.004

UM unseulpixel, trees, leaves, bw,blackandwhite,“
l  naturey crap foliage, forest, noiretblanc, S
woods, biancoenero
branches, blancoynegro ‘
path

= Code is available

http://www.cs.toronto.edu/~nitish/multimodal/
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http://www.cs.toronto.edu/~nitish/multimodal/

Deep Multimodal Boltzmann Machines

= Text information can help visual predictions!
= |Image retrieval task on MIR Flickr dataset

Model MAP Prec@50

Image LDA (Huiskes et al., 2010)  0.315 -

Image SVM (Huiskes et al.. 2010)  0.375 -

Image DBN 0.463 £ 0.004 0.801 £ 0.005
Image DBM 0.469 £ 0.005 0.803 £ 0.005
Multimodal DBM (generated text) 0.531 + 0.005 0.832 + 0.004
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Analyzing Intermediate Representations

+—4¢ Multimodal Deep Boltzmann Machine
1 Multimodal Deep Belief Net

0.60}

0.55f

Mean Average Precision

0.45r

0.40 : ' *
image input \nage mdd ge h\dde omt h\dd ext h\ddenztext nidden? ¢oxt input
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Comparing deep multimodal representations

= Difference between them and the RBMs and the
autoencoders

= Qverall very similar behavior

Model DBN DAE DBM

Logistic regression on joint
layer features

Sparsity + Logistic regression
on joint layer features
Sparsity + discriminative
fine-tuning

Sparsity + discriminative
fine-tuning + dropout

Language Technologies Institute

0.599 £+ 0.004 0.600 £ 0.004 0.609 £ 0.004

0.626 £+ 0.003 0.628 4+ 0.004 0.631 £ 0.004

0.630 £ 0.004 0.630 £ 0.003 0.634 £+ 0.004

0.638 £ 0.004 0.638 = 0.004 0.641 + 0.004




Supervised
Joint representations
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Multimodal Joint Representation

» For supervised learning tasks

= Joining the unimodal
representations:
= Simple concatenation
= Element-wise multiplication 000 -- 0001,
or summation /\
" Multilayer perceptron  p_(@@ 90 [@0-.-00lh,
= How to explicitly model
poth unimodal and
oimodal interactions?

e.g. Sentiment
(@@ - - - @® @) softmax

[QQ...QQ] [ ]

Text Image
X Y
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Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)
(& - ; Sentiment Intensity [-3,+3]
’, A e @@ ---@® @) softmax
« 2199 subjective video segments (000 ---000) h,

» Sentiment intensity annotations
* 3 modalities: text, video, audio

00 ---00),(

h)[c ACISELE

00 ---00) | ] 00 ---00)

hy = f(W - [hy, hy, hy]) Text Image Audio
X Y Z

) @000

h,

Multimodal joint representation:
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Unimodal, Bimodal and Trimodal Interactions

Speaker’s behaviors

Sentiment Intensity

— “This MOVIE is SICK” = == m= mm s o o o o o s o o s s o o s s o s o o > ?

©

-8 “This MOVie is fair” = = = mm e o o o o o o o o o o o o o > +

E Unimodal
c SIMIlE = == o o o o o >

-

LOUd VOICE [ = m= o o o s o o i s o o o e o o e o i o e > ?

= “This movie is sick” T | ——— > + +
S bimodal

g “This movie is sick” S| ————— > mmmm

al rre—s _ s o

This movie is sick Loud Voice fmm===—————— > ?

©

e “This movie is sick” Smile Loud voice [= = === == > .
g & trimodals
-IE “This movie is fair” Smile Loud voice [= == = == = = o = > +
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Bilinear Pooling

e.g. Sentiment
Models bimodal interactions: @@ - ®®) softmax

hm:hx®h’y =hx®hy
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Multimodal Tensor Fusion Network (TFN)

Models both unimodal and
bimodal interactions:

- ol I G

e.g. Sentiment

Bimodal e

@@ ---@® @] softmax

h,( @@ --00) | Jh,
90 ---00] | ]
Text Image
X Y
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Multimodal Tensor Fusion Network (TFN)

hy ® h,

Can be extended to three modalities:

= @[] o]

Explicitly models / | \

bimodal and h[OO .- 90
» - x a
Interactions !

rraxrin | 00 - - 00)

Text Image Audio
X Y Z
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Experimental Results — MOSI Dataset

Multimodal Binary S-class  Regression Bl Binary 5-class  Regression
Baseline Acc(%) Fl  Acc(%) MAE  r Acc(%) Fl Acc(%) MAE  r
Random 502 487 239 188 - TFNlang'uage 74.8 75.6 38.5 0.99 0.61
SAL-CNN 73.0 - ; ] ] TFNucoustic  65.1 673 275 1.23 0.36
i‘F/M‘MD Z’l}-g 33? 2?-8 H? 22? TFNvimosa: 752 760 396 092  0.65
: : : TFNirimodat 745 750 389 093 0.65
TEN 771 719 420  0.87 0.70 TN, orrimodat  75.3 76.2 397 0.919 0.66
Human 85.7 875 539 071 082
— TEN 771 779 420 087 0.70
A 40 127 167 10237017 TFNariy 752 762 39.0 0.96 0.63
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From Tensor Representation to Low-rank Fusion

Low-rank Multimodal Fusion

Visual —

Language —_—

Visual

Language Tensor Fusion Networks
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(1) Decomposition of weight tensor W
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(2) Decomposition of Z

Language Technologies Institute



(3) Rearranging computation
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Multimodal Encoder-Decoder

= Visual modality often
encoded using CNN

= Language modality will D)
be decoded using LSTM (:)
= A simple multilayer /Q\
perceptron will be used ©)
to translate from visual 00 00 | )
(CNN) to language | |
(LSTM) @0 - 00) L0 ---00]
Text Image

X Y
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Coordinated
Multimodal
Representations



Coordinated multimodal embeddings

= |nstead of projecting to a joint space enforce the similarity between
unimodal embeddings

Repres.1 <«=P  Repres 2

I I

Modality 1 Modality 2
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Coordinated Multimodal Representations

Learn (unsupervised) two or more

coordinated representations from

multiple modalities. A loss function

IS defined to bring closer these .
multiple representations. Similarity metric | cosine

/v\ distance)

00 ---00) 0000

00 00
00 ---00) |
Text Image
X Y
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Coordinated Multimodal Embeddings

What should be the loss function?

Distance(Xx,y)

Image features Text: a parrot rides a tricycle
X Y

[Frome et al., DeVIiSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]
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Max-Margin Loss — Multimodal Embeddings

. What should be the loss function?
Max-margin:

d(zi,y;) +m <d(xiye) Vy; € YT Yy €Y, Distance(Xx,y)

Margin Positive Negative @
labels labels ‘ ¥

Image features Text: a parrot rides a tricycle
X Y

[Frome et al., DeVIiSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]
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Structure-preserving Loss — Multimodal Embeddings

Symmetric max-margin:
d(wi,y;) +m < d(zi,y) Yy €Y, Yy €Y
d(zjryi) +m < dag,yy) Vrjp e X Vo € X,

Neighborhood of x;:
4; Images that share the

same meaning (text)
Structure-preserving constraints /
d(z;, ;) +m < d(xi,x) Yo; € N(x;), Vo € N(x;)

d(yir,yj ) +m < d(yir.yr) Yyjr € N(yir), Vyrr € N(yir)

[Wang et al., Learning Deep Structure-Preserving Image-Text Embeddings, CVPR 2016]
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