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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.1: Multimodal 

Representations

* Original version co-developed with Tadas Baltrusaitis



Objectives of today’s class

▪ Unsupervised representation learning

▪ Restricted Boltzmann Machines

▪ Autoencoders

▪ Deep Belief Nets, Stacked autoencoders

▪ Multi-modal representations

▪ Coordinated vs. joint representations

▪ Multimodal Deep Boltzmann Machines

▪ Deep Multimodal autoencoders

▪ Tensor Fusion representation

▪ Low-rank fusion representations
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Administrative Stuff



Upcoming Schedule

▪ First project assignment:

▪ Proposal presentation (10/1 and 10/3) 

▪ First project report (Sunday 10/6)

▪ Midterm project assignment

▪ Midterm presentations (11/5 and 11/7)

▪ Midterm report (Sunday 11/10)

▪ Final project assignment

▪ Final presentation (12/3 & 12/5)

▪ Final report (Sunday 12/8)



Proposal Presentation

▪ 5 minutes (about 5-8 slides)

▪ All team members should be involved in the presentation

▪ Will receive feedback from instructors and other students

▪ 1-2 minutes between presentations reserved for written 

feedback

▪ Main presentation points

▪ Research problem and motivation

▪ Prior work

▪ New research ideas

▪ You need to submit a copy of your slides (PDF or PPT)

▪ Deadline: Friday 10/4 (on Gradescope)



Project Proposal Report

▪ Part 1 (updated version of your pre-proposal)

▪ Introduction:

▪ Describe and motivate the research problem

▪ Define in generic terms the main computational 

challenges

▪ Experimental Setup:

▪ Describe the dataset(s) you are planning to use for this 

project. 

▪ Describe the input modalities and annotations available in 

this dataset. 



Project Proposal Report

▪ Part 2

▪ Related Work: 

▪ Include 12-15 paper citations which give an overview of 

the prior work

▪ Present in more details the 3-4 research papers most 

related to your work

▪ New Research Ideas 

▪ Describe your specific challenges and/or research 

hypotheses 

▪ Highlight the novel aspect of your proposed research



Project Proposal Report

▪ Part 3

▪ Language Modality Exploration: 

▪ Explore neural language models on your dataset (e.g., using Keras)

▪ Train at least two different language models (e.g., using SimpleRNN, 

GRU or LSTM) on your dataset and compare their perplexity. 

▪ Include qualitative examples of successes and failure cases.

▪ Visual Modality Exploration: 

▪ Explore pre-trained Convolutional Neural Networks (CNNs) on your 

dataset

▪ Load a pre-existing CNN model trained for object recognition (e.g., 

VGG-Net) and process your test images. 

▪ Visualize the visual representations (using t-sne visualization) with 

overlaid class labels with different colors. 
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Unsupervised 

representation learning



Unsupervised learning

▪ We have access to 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑛} and not 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}

▪ Why would we want to tackle such a task

▪ 1. Extracting interesting information from data

▪ Clustering

▪ Discovering interesting trends

▪ Data compression

▪ 2. Learn better representations



Unsupervised representation learning

▪ Force our representations to better model input 

distribution

▪ Not just extracting features for classification

▪ Asking the model to be good at representing the data 

and not overfitting to a particular task

▪ Potentially allowing for better generalizability

▪ Use for initialization of supervised task, 

especially when we have a lot of unlabeled data 

and much less labeled examples
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Restricted Boltzmann 

Machines



Restricted Boltzmann Machine (RBM)

▪ Undirected Graphical Model

▪ A generative rather than discriminative model

▪ Connections from every hidden unit to every visible one

▪ No connections across units (hence Restricted), makes it 

easier to train and do inference on

𝑥2

ℎ2ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

[Smolensky, Information Processing in Dynamical Systems: Foundations of 

Harmony Theory, 1986]
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Restricted Boltzmann Machine (RBM)

𝑝 𝒙, 𝒉; 𝜃 =
exp(−E 𝒙, 𝒉; 𝜃 )

σ𝒙′σ𝒉′ exp(−E 𝒙′, 𝒉′; 𝜃 )
▪ Hidden and visible layers are binary (e.g. 𝒙 = {0,… , 1,0,1})

▪ Model parameters 𝜃 = 𝑊,𝒃, 𝒂

E = −𝒙𝑊𝒉 − 𝒃𝒙 − 𝒂𝒉
E = −σ𝑖σ𝑗𝑤𝑖,𝑗𝑥𝑖ℎ𝑗 − σ𝑖 𝑏𝑖𝑥𝑖 − σ𝑗 𝑎𝑗ℎ𝑗

Interaction 

term

Bias terms

𝑥2

ℎ2ℎ1

𝑥1

Hidden 

layer

Visible

layer

ℎ𝑘

𝑥𝑛

Partition 

function 𝒁
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Boltzmann Machine

𝑥2

ℎ2ℎ1

𝑥1

Hidden 

layer

Visible

layer

ℎ𝑘

𝑥𝑛𝑥2

ℎ2ℎ1

𝑥1
ℎ𝑘

𝑥𝑛

𝑝 𝒙, 𝒉; 𝜃 =
exp(−E 𝒙, 𝒉; 𝜃 )

σ𝒙′σ𝒉′ exp(−E 𝒙′, 𝒉′; 𝜃 )
▪ Hidden and visible layers are binary (e.g. 𝒙 = {0,… , 1,0,1})
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Statistical Mechanics: Boltzmann Distribution
[also called Gibbs measure]

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝒉; 𝜃 =
exp( Τ−E 𝒉; 𝜃 𝑘𝑇)

σ𝒉′ exp( Τ−E 𝒉′; 𝜃 𝑘𝑇)

➢ probability distribution that gives the probability 

that a system will be in a certain state 𝒉

E 𝒉; 𝜃 : Energy of state 𝒉

𝑘: Boltzmann constant

𝑇: Thermodynamic temperature



RBM inference (have a trained 𝜃)

▪ For inference

▪ 𝑝 ℎ𝑗 = 1 𝒙; 𝜃 = 𝜎 σ𝑖 𝑥𝑖𝑤𝑖𝑗 + 𝑎𝑗 ,

▪ 𝑝 𝑥𝑖 = 1 𝒉; 𝜃 = 𝜎 σ𝑗 ℎ𝑗𝑤𝑖𝑗 + 𝑏𝑖

▪ derived from the joint probability 

definition

▪ Conditional inference is easy and of 

sigmoidal form

▪ Given a trained model 𝜃 and an observed 

value 𝒙 can easily infer 𝒉

▪ Given a trained model 𝜃 and an hidden 

layer value 𝒉 can easily infer 𝒙

▪ Need to sample as we get probabilities 

rather than values

𝑥2

ℎ2ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

𝑊

𝒂

𝒃



RBM training (learning the 𝜃)

▪ Want to have a model that leads to good likelihood of training data

▪ First express the data likelihood (through marginal probability):

▪ 𝑝 𝒙; 𝜃 =
σ𝒉 exp(−𝐸 𝒙,𝒉;𝜃 )

𝑍

▪ Want to optimize:

▪ argmin𝜃 σ𝑡− log 𝑝 𝒙(𝑡); 𝜃 , where 𝑡 is a data sample

▪ sum across all samples

▪ minimizing negative log likelihood instead of maximizing the likelihood

▪ To Approximate computation of model term using Contrastive 

Divergence

▪ Based on Markov Chain Monte Carlo (Gibbs) sampling

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations for more details

𝑍 =
𝒙


𝒉
exp(−E 𝒙, 𝒉; 𝜃 )

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations


RBM extensions

▪ So far have only modeled binary input and hidden states

▪ Gaussian-Bernoulli RBM allows for real value modeling

▪ Changes the inference and training only very slightly

▪ Visible units are modeled as real values (under a Gaussian 

distribution), but hidden units are still binary

▪ [Hinton and Salakhutdinov, Reducing the Dimensionality of Data with 

Neural Networks, 2006]

▪ Only requires a small change in some of the equations

▪ Can also introduce sparsity in hidden layers (sometimes 

helps)
▪ [Lee et al., Sparse deep belief net model for visual area V2, 2007]



Examples of what the model learns

MNIST data Learned W terms for each hidden unit



Deep Restricted Boltzmann Machines (DBMs)

▪ Can stack RBMs together to lead do 

deep versions of them

▪ The visible layer can be binary, Gaussian 

or Bernoulli

▪ Training fully end to end is very difficult

▪ Greedy layer-wise training

▪ Combine the RBMs layer by layer

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer



Deep Belief Networks (DBN)

▪ To make it easier used Deep Belief 

Networks

▪ Actually came before Deep RBMs

▪ Simplifies model training

▪ Turn the undirected model to 

directed one, making the interaction 

simpler

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer

BN

BN

RBM

RBM

RBM

For more details see [Salakhutdinov and 

Hinton, Deep Boltzmann Machines, 2009]
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Autoencoders



Autoencoders – an alternative to RBM

▪ What does auto mean?

▪ Greek for self – self encoding

▪ Feed forward network 

intended to reproduce the 

input

▪ Two parts encoder/decoder

▪ 𝑥′ = 𝑓(𝑔 𝑥 ) – score function

▪ 𝑔 - encoder

▪ 𝑓 - decoder
𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Encoder

Decoder



Autoencoders

▪ Mostly follows Neural Network structure

▪ Typically a matrix multiplication followed 

by a nonlinearity (e.g sigmoid)

▪ Activation will depend on type of 𝒙

▪ Sigmoid for binary

▪ Linear for real valued

▪ Often we use tied weights to force the 

sharing of weights in encoder/decoder

▪ 𝑊∗ = 𝑊𝑇

▪ word2vec is actually a bit similar to an 

autoencoder (except for the auto part)

𝑓 = 𝜎(𝑊𝒙)

𝑔 = 𝜎(𝑊∗𝒉)

𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔



Loss function

▪ Any differentiable similarity function

▪ Cross-entropy for binary 𝒙

▪ 𝐿 = −σ𝑘(𝑥𝑘 log 𝑥′𝑘 + (1 − 𝑥𝑘) log 1 − 𝑥′𝑘 )

▪ Euclidean for real valued 𝒙

▪ 𝐿 =
1

2
σ𝑘(𝑥𝑘 − 𝑥′𝑘)

2

▪ Cosine similarity etc.

▪ Depends on the data being modeled

𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss



Learning

▪ To learn the model parameters (𝑊∗,𝑊), we 

use back-propagation

▪ In case of Euclidean (with linear act) and 

Cross-entropy (with sigmoid act), we just 

have (𝑥′ − 𝑥) error to propagate

▪ If we’re using tied weights, gradients need 

to be summed (like back propagation 

through time in RNN)

▪ Can use batch/stochastic gradient descent 

as before
𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Error



Denoising autoencoder

▪ Simple idea

▪ Add noise to input 𝒙 but 

learn to reconstruct original

▪ Leads to a more robust 

representation and prevents 

copying

▪ Learns what the relationship 

is to represent a certain 𝒙

▪ Different noise added during 

each epoch

ො𝑥1

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

𝑥2𝑥1 𝑥𝑛

Noise

ො𝑥2 ො𝑥𝑛𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss



Autoencoder vs denoising autoencoder

▪ MNIST data (as before)

Qualitatively denoising autoencoder leads to more meaningful features

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)



Stacked autoencoders

▪ Can stack autoencoders as 

well

▪ Each encoding unit has a 

corresponding decoder

▪ As before, inference is 

feedforward, but now with 

more hidden layers

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

Dec

𝒙

𝒉𝟏

𝒙′

Enc



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

▪ Map from all 𝒙’s to 𝒉𝟏’s 

▪ Discard decoder for now

▪ Train the second layer

▪ Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐 from 𝒉𝟏
▪ Repeat for as many layers 𝒉𝟏

Fixed

𝒙

𝒉𝟐
Enc

Dec

𝒉𝟏

𝒉′𝟏

Fixed



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

▪ Map from all 𝒙’s to 𝒉𝟏’s 

▪ Discard decoder for now

▪ Train the second layer

▪ Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐 from 𝒉𝟏
▪ Repeat for as many layers

▪ Reconstruct using previously learned 

decoders mappings

▪ Fine-tune the full network end-to-end 𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Stacked denoising autoencoders

▪ Can extend this to a 

denoising model

▪ Add noise when training 

each of the layers

▪ Often with increasing 

amount of noise per layer

▪ 0.1 for first, 0.2 for second, 

0.3 for third

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Deep representations

▪ What can we do with them?

▪ Compression

▪ Can work better than PCA

▪ [Hinton and Salatkhudinov, Reducing 

the dimensionality of data with neural 

networks, 2006]



Deep representations

▪ What can we do with them?

▪ Compression

▪ Can work better than PCA
▪ [Hinton and Salatkhudinov, Reducing the 

dimensionality of data with neural networks, 

2006]

▪ Discarding the decoder and using the 

middle layer as a representation

▪ Finetuning the autoencoder for a task

Classifier

𝒙

𝒉𝟏

𝒉𝟐

Encoder

𝒚
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Multimodal 

representations



Multimodal representations

▪ What do we want from multi-modal 

representation

▪ Similarity in that space implies 

similarity in corresponding concepts

▪ Useful for various discriminative 

tasks – retrieval, mapping, fusion 

etc.

▪ Possible to obtain in absence of one 

or more modalities

▪ Fill in missing modalities given 

others (map between modalities)

Modality 1 Modality 2 Modality 3

Fancy 
representation

Modality 1 Modality 2 Modality 3

Fancy 
representation

Prediction

Modality 1 Modality 2
Fancy 

representation
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Core Challenge: Multimodal Representation

Modality 1 Modality 2

Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Joint representations:A
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Joint Multimodal Representation

“I like it!” Joyful tone

Tensed voice

“Wow!”

Joint Representation
(Multimodal Space)



41

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B
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Unsupervised 

Joint representations



Shallow multimodal representations

▪ Want deep multimodal representations

▪ Shallow representations do not capture complex relationships

▪ Often shared layer only maps to the shared section directly

Shallow RBM Shallow Autoencoder



Deep Multimodal autoencoders

▪ A deep representation 

learning approach

▪ A bimodal auto-encoder

▪ Used for Audio-visual speech 

recognition

▪ [Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pre-trained

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

▪ Remove video



Deep Multimodal autoencoders

▪ Can now discard the decoder and 

use it for the AVSR task

▪ Interesting experiment

▪ “Hearing to see”



Deep Multimodal Boltzmann machines

▪ Generative model

▪ Individual modalities trained like a 

DBN

▪ Multimodal representation trained 

using Variational approaches

▪ Used for image tagging and cross-

media retrieval

▪ Reconstruction of one modality from 

another is a bit more “natural” than in 

autoencoder representation

▪ Can actually sample text and images

▪ [Srivastava and  Salakhutdinov,  Multimodal Learning with 

Deep Boltzmann Machines, 2012, 2014]



Deep Multimodal Boltzmann machines

▪ Pre-training on unlabeled 

data helps

▪ Can use generative models

▪ Code is available
▪ http://www.cs.toronto.edu/~nitish/multimodal/

http://www.cs.toronto.edu/~nitish/multimodal/


Deep Multimodal Boltzmann Machines

▪ Text information can help visual predictions!

▪ Image retrieval task on MIR Flickr dataset
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Analyzing Intermediate Representations



Comparing deep multimodal representations

▪ Difference between them and the RBMs and the 

autoencoders

▪ Overall very similar behavior



53

Supervised

Joint representations



Multimodal Joint Representation

▪ For supervised learning tasks

▪ Joining the unimodal 

representations:

▪ Simple concatenation

▪ Element-wise multiplication  

or summation

▪ Multilayer perceptron

▪ How to explicitly model    

both unimodal and      

bimodal interactions?

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

𝒉𝒎



55

Multimodal Sentiment Analysis

· · ·

· · ·

Text
𝑿

𝒉𝒙

softmax· · ·

Sentiment Intensity [-3,+3]

· · · 𝒉𝒎

Audio
𝒁

𝒉𝒛

· · ·

· · ·

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒎 = 𝒇 𝑾 ∙ 𝒉𝒙, 𝒉𝒚, 𝒉𝒛
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Unimodal, Bimodal and Trimodal Interactions

“This movie is fair”

Smile

Loud voice

Speaker’s behaviors Sentiment Intensity

U
n

im
o

d
al

?

“This movie is sick” Smile

“This movie is sick” Frown

“This movie is sick” Loud voice ?

B
im

o
d

al

“This movie is sick” Smile Loud voice

Tr
im

o
d

al

“This movie is fair” Smile Loud voice

“This movie is sick” ?

Resolves ambiguity

(bimodal interaction)

Still Ambiguous !

Different trimodal

interactions !

Ambiguous !

Unimodal cues

Ambiguous !
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= 𝒉𝒙 ⊗𝒉𝒚

Bilinear Pooling

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

Models bimodal interactions:

𝒉𝒎 = 𝒉𝒙⊗𝒉𝒚

[Tenenbaum and Freeman, 2000]

𝒉𝒎
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=
𝒉𝒙 𝒉𝒙⊗𝒉𝒚
1 𝒉𝒚

Multimodal Tensor Fusion Network (TFN)

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

Models both unimodal and 

bimodal interactions:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

[Zadeh, Jones and Morency, EMNLP 2017]

𝒉𝒎
Unimodal

Bimodal

Important !
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Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

⊗
𝒉𝒛
1

[Zadeh, Jones and Morency, EMNLP 2017]

Explicitly models unimodal, 
bimodal and trimodal

interactions !
· · ·

· · ·

Audio
𝒁

· · ·

· · ·

Text
𝑿

𝒉𝒙 𝒉𝒛

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒛

𝒉𝒙

𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚
𝒉𝒙 ⊗𝒉𝒛

𝒉𝒛⊗𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚 ⊗𝒉𝒛
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Experimental Results – MOSI Dataset

Improvement over State-Of-The-Art
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Visual

Language

① Decomposition     of weight 𝑊.

② Decomposition of input tensor 𝑍.

③ Rearrange the       computation of ℎ.

Visual

Language

Low-rank Multimodal Fusion

Tensor Fusion Networks

From Tensor Representation to Low-rank Fusion
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𝑤𝑙
(1)⨂

+ + ⋯

𝑤𝑣
(1)

𝑤𝑙
(2)⨂

𝑤𝑣
(2)

∙⨂
𝟏

𝟏

𝑧𝑙

𝑧𝑣

𝒵

𝟏

𝒲 = ℎ

① Decomposition of weight tensor W

62
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𝑤𝑙
(1)⨂

+ + ⋯

𝑤𝑙
(2)⨂

𝑤𝑣
(1)

𝑤𝑣
(2)

∙⨂

𝟏

𝑧𝑙

𝟏

𝑧𝑣

𝒵

𝟏

= ℎ

② Decomposition of Z

63
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𝑤𝑙
(1)

𝑤𝑙
(2)

𝑤𝑣
(1)

𝑤𝑣
(2)

𝟏

𝑧𝑙

𝟏

𝑧𝑣

= ℎ∙ + ⋯+ ∙ + ⋯+∘

③ Rearranging computation

64
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Multimodal Encoder-Decoder

· · ·

· · ·

· · ·

· · ·

Text Image

···

𝒀𝑿

▪ Visual modality often 

encoded using CNN

▪ Language modality will 

be decoded using LSTM 

▪ A simple multilayer 

perceptron will be used 

to translate from visual 

(CNN) to language 

(LSTM)
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Coordinated

Multimodal 

Representations



Coordinated multimodal embeddings

▪ Instead of projecting to a joint space enforce the similarity between 

unimodal embeddings

Modality 1 Modality 2

Repres 2Repres. 1
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Coordinated Multimodal Representations

· · ·

· · ·

· · ·

· · ·

Text Image

· · · · · ·

Similarity metric

(e.g., 

cosine 

distance)

Learn (unsupervised) two or more 

coordinated representations from 

multiple modalities. A loss function 

is defined to bring closer these 

multiple representations. 

𝒀𝑿



Coordinated Multimodal Embeddings

What should be the loss function?

X Y

Distance(x,y)

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]



Max-Margin Loss – Multimodal Embeddings

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, NIPS 2013]

What should be the loss function?

X Y

Distance(x,y)

Max-margin:

Positive 

labels

Negative 

labels

Margin



Structure-preserving Loss – Multimodal Embeddings

Symmetric max-margin:

[Wang et al., Learning Deep Structure-Preserving Image-Text Embeddings, CVPR 2016]

Structure-preserving constraints

Neighborhood of 𝒙𝒊: 
images that share the 

same meaning (text)


