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Louis-Philippe Morency

Multimodal Machine Learning

Lecture 4.2: Multivariate Statistics 

and Coordinated Representations

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Quick recap

▪ Multivariate statistical analysis
▪ Basic concepts (multivariate, covariance,…)

▪ Canonical Correlation Analysis

▪ Deep Correlation Networks
▪ Deep CCA, DCCA-AutoEncoder

▪ Multi-view clustering
▪ Nonnegative Matrix Factorization

▪ Multi-view latent intact space
▪ Autoencoder in Autoencoder networkds
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Administrative Stuff
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Classes Tuesday Lectures Thursday Lectures
Week 1
8/27 & 8/29

Course introduction 
• Research and technical challenges
• Course syllabus and requirements

Multimodal applications and datasets
• Research tasks and datasets
• Team projects

Week 2
9/3 & 9/5
***

Basic concepts: neural networks
• Language, visual and acoustic 
• Loss functions and neural networks

Basic concepts: network optimization
• Gradients and backpropagation
• Practical deep model optimization

Week 3
9/10 & 9/12
*Pre-proposal*

Convolutional neural networks
• Convolutional kernels and CNNs
• Residual networks

Recurrent neural networks
• Gated networks and LSTM
• Backpropagation Through Time

Week 4
9/17 & 9/19

Multimodal representation learning
• Multimodal auto-encoders
• Multimodal joint representations

Coordinated representations
• Deep canonical correlation analysis
• Non-negative matrix factorization

Week 5
9/24 & 9/26

Multimodal alignment 
• Explicit - dynamic time warping
• Implicit - attention models

Structured representations
• Module networks
• Tree-based and stack models

Week 6
10/1 & 10/3

First project assignment - Presentations

Lecture Schedule

First assignment due 

on Sunday 10/6
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Classes Tuesday Lectures Thursday Lectures
Week 7
10/8 & 10/10

Alignment and representation
• Multi-head attention
• Multimodal transformers

Probabilistic graphical models
• Dynamic Bayesian networks
• Coupled and factor HMMs

Week 8
10/15 & 10/17

Reinforcement learning
• Markov decision process
• Q learning and policy gradients

Multimodal RL
• Deep Q learning
• Multimodal applications

Week 9
10/22 & 10/24

Discriminative graphical models
• Boltzmann distribution and CRFs
• Continuous and fully-connected CRFs

Generative Models and Translation
• Variational auto-encoder
• Generative adversarial approaches

Week 10
10/29 & 10/31

Multimodal fusion and co-learning
• Multi-kernel learning and fusion
• Multimodal transfer learning 

New directions in Multimodal ML
• Overview of recent approaches in 

multimodal machine learning
Week 11
11/5 & 11/7

Mid-term project assignment - Presentations

Lecture Schedule

Midterm due on 11/10.  
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Classes Tuesday Lectures Thursday Lectures
Week 12
11/12 & 11/14

Multi-lingual representations
• Neural machine translation 
• Guest lecture: Graham Neubig 

Knowledge representation
• Multimodal knowledge discovery

• Guest lecture
Week 13
11/19 & 11/21

Thanksgiving week (no classes)

Week 14
11/26 & 11/28

Language, vision and action
• Neural machine translation 
• Guest lecture

Multimodal affective computing
• Emotion and sentiment analysis
• Guest lecture

Week 15
12/3 & 12/5

Final project assignment - Presentations

Lecture Schedule

Final due on 12/8.  
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Quick Recap
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

❑ Deep Multimodal 

Boltzmann machines

· · · softmax

𝒀𝑿
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

Text Image

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

❑ Deep Multimodal 

Boltzmann machines

❑ Stacked Autoencoder

𝒀𝑿

𝒀′𝑿′



10

Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

Text Image

···

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

❑ Deep Multimodal 

Boltzmann machines

❑ Stacked Autoencoder

❑ Encoder-Decoder

𝒀𝑿
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Multimodal Representation Learning

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

❑ Deep Multimodal 

Boltzmann machines

❑ Stacked Autoencoder

❑ Tensor Fusion representation

❑ Encoder-Decoder

How Can We Learn Better Representations?

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

𝒉𝒎
Unimodal

Bimodal
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Coordinated

Multimodal 

Representations



Coordinated multimodal embeddings

▪ Instead of projecting to a joint space enforce the similarity between 

unimodal embeddings

Modality 1 Modality 2

Repres 2Repres. 1
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Coordinated Multimodal Representations

· · ·

· · ·

· · ·

· · ·

Text Image

· · · · · ·

Similarity metric

(e.g., 

cosine 

distance)

Learn (unsupervised) two or more 

coordinated representations from 

multiple modalities. A loss function 

is defined to bring closer these 

multiple representations. 

𝒀𝑿



Coordinated Multimodal Embeddings

[Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]



Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]



Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]



Structured coordinated embeddings

▪ Instead of or in addition to similarity add alternative 

structure

[Vendrov et al., Order-Embeddings of 

Images and Language, 2016]

[Jiang and Li, Deep Cross-Modal Hashing] 
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Multivariate 

Statistical Analysis



Multivariate Statistical Analysis

“Statistical approaches to understand the 

relationships in high dimensional data”

▪ Example of multivariate analysis approaches:

▪ Multivariate analysis of variance (MANOVA)

▪ Principal components analysis (PCA)

▪ Factor analysis 

▪ Linear discriminant analysis (LDA)

▪ Canonical correlation analysis (CCA)
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Random Variables

Examples of random variables:

Definition: A variable whose possible values are 

numerical outcomes of a random phenomenon. 

❑ Discrete random variable is one which may take on only a 

countable number of distinct values such as 0,1,2,3,4,…

❑ Continuous random variable is one which takes an infinite 

number of possible values.

• Someone’s age

• Someone’s height

• Someone’s weight

Discrete or 

continuous?

Correlated?
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Definitions

Given two random variables 𝑋 and 𝑌: 

Expected value

Variance

𝜇 = 𝐸 𝑋 =

𝑖

𝑥𝑖𝑃(𝑥𝑖)

𝜎2 = 𝑉𝑎𝑟(𝑋) = 𝐸[ 𝑋 − 𝜇 𝑋 − 𝜇 ]

➢ If same probability for all observations 𝑥𝑖, then same as arithmetic mean

➢ Variance is equal to the square of the standard deviation 𝜎

Covariance

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[ 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑦 ]

= 𝐸[ ത𝑋 ത𝑋] If data is 

centered

= 𝐸[ ത𝑋 ത𝑌]

probability-weighted average of all possible values

measures the spread of the observations

measures how much two random variables change together
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Definitions

Pearson Correlation measures the extent to which two 

variables have a linear relationship with each other

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟 𝑋, 𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝑣𝑎𝑟 𝑋 𝑣𝑎𝑟(𝑌)
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Pearson Correlation Examples
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Definitions

Multivariate (multidimensional) random variables

𝑿 = [𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑀]

𝒀 = [𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑁]

Σ𝑿 = Σ𝑿,𝑿 = 𝑣𝑎𝑟(𝑿) = 𝐸 𝑿 − 𝐸[𝑿] 𝑿 − 𝐸[𝑿] 𝑇

Covariance matrix generalizes the notion of variance

(aka random vector)

Σ𝑿,𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) = 𝐸 𝑿 − 𝐸[𝑿] 𝒀 − 𝐸[𝒀] 𝑇

Cross-covariance matrix generalizes the notion of covariance

= 𝐸[ഥ𝑿ഥ𝑿𝑇]

= 𝐸[ഥ𝑿ഥ𝒀𝑇]
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Definitions

Σ𝑿,𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) =

𝑐𝑜𝑣(𝑋1, 𝑌1) 𝑐𝑜𝑣(𝑋2, 𝑌1)
𝑐𝑜𝑣(𝑋1, 𝑌2) 𝑐𝑜𝑣(𝑋2, 𝑌2)

…
…

𝑐𝑜𝑣(𝑋𝑀, 𝑌1)
𝑐𝑜𝑣(𝑋𝑀, 𝑌2)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑋1, 𝑌𝑁) 𝑐𝑜𝑣(𝑋2, 𝑌𝑁) … 𝑐𝑜𝑣(𝑋𝑀, 𝑌𝑁)

Multivariate (multidimensional) random variables

𝑿 = [𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑀]

𝒀 = [𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑁]

Σ𝑿 = Σ𝑿,𝑿 = 𝑣𝑎𝑟(𝑿) = 𝐸 𝑿 − 𝐸[𝑿] 𝑿 − 𝐸[𝑿] 𝑇

Covariance matrix generalizes the notion of variance

(aka random vector)

Cross-covariance matrix generalizes the notion of covariance

= 𝐸[ഥ𝑿ഥ𝑿𝑇]
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Definitions – Matrix Operations

Trace is defined as the sum of the elements on the main diagonal 

of any matrix 𝑿

𝑡𝑟 𝑿 =

𝑖=1

𝑛

𝑥𝑖𝑖



28

Principal component analysis

PCA converts a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated 

variables called principal components

▪ Eigenvectors are orthogonal towards each other and have 

length one

▪ The first couple of eigenvectors explain the most of the 

variance observed in the data

▪ Low eigenvalues indicate little loss of information if omitted



Eigenvalues and Eigenvectors

If A is an nn matrix, do there exist nonzero vectors x

in R
n

such that Ax is a scalar multiple of x?

A: an nn matrix

: a scalar (could be zero)

x: a nonzero vector in R
n

A =x x

Eigenvalue
Eigenvector

Geometric Interpretation

➢ (The term eigenvalue is from the German 

word Eigenwert, meaning “proper value”)

x

A x = x

x

y

Eigenvalue decomposition

Eigenvalue equation:



Singular Value Decomposition (SVD)

▪ SVD expresses any matrix 𝐀 as 

𝐀 = 𝐔𝐒𝐕𝑇

▪ The columns of 𝐔 are eigenvectors of 𝐀𝐀𝑇, and 

the columns of 𝐕 are eigenvectors of 𝐀𝑇𝐀.

𝐀𝐀𝑇𝐮𝑖 = 𝑠𝑖
2𝐮𝑖

𝐀𝑇𝐀𝐯𝑖 = 𝑠𝑖
2𝐯𝑖
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Canonical 

Correlation Analysis
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demographic properties responses to survey

audio features at time i video features at time i

Multi-view Learning

𝑿 𝒀
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Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

1 Learn two linear projections, one 

for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

“canonical”: reduced to the simplest or clearest 

schema possible

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚

= argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀
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Correlated Projection

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
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Canonical Correlation Analysis

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

= argmax
𝒖,𝒗

𝑐𝑜𝑣(𝒖𝑻𝑿, 𝒗𝑻𝒀)

𝑣𝑎𝑟 𝒖𝑻𝑿 𝑣𝑎𝑟(𝒗𝑻𝒀)

= argmax
𝒖,𝒗

𝒖𝑻𝑿𝒀𝑇𝒗

𝒖𝑻𝑿𝑿𝑻𝒖 𝒗𝑻𝒀𝒀𝑻𝒗

𝚺𝑿𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) = 𝑿𝒀𝑻

where

if both 𝑿, 𝒀 have 0 mean

𝝁𝑿 = 𝟎 𝝁𝒀 = 𝟎

= argmax
𝒖,𝒗

𝒖𝑻𝚺𝑿𝒀𝒗

𝒖𝑻𝚺𝑿𝑿𝒖 𝒗𝑻𝚺𝒀𝒀𝒗
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Canonical Correlation Analysis

2

We want to learn multiple projection pairs 𝒖(𝑖)𝑿, 𝒗(𝑖)𝒀 :

𝒖(𝑖)
∗ , 𝒗(𝑖)

∗ = argmax
𝒖 𝑖 ,𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝑿𝒖(𝑖) 𝒗(𝑖)

𝑻 𝚺𝒀𝒀𝒗(𝑖)

We want these multiple projection pairs to be orthogonal 

(“canonical”) to each other:

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]
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Canonical Correlation Analysis

3

𝑼∗, 𝑽∗ = argmax
𝑼,𝑽

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)

𝑼𝑻𝚺𝑿𝑿𝑼 𝑽𝑻𝚺𝒀𝒀𝑽

Since this objective function is invariant to scaling, we 

can constraint the projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

Canonical Correlation Analysis:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

for 𝑖 ≠ 𝑗
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

Σ =

𝚺𝑿𝑿 𝚺𝒀𝑿

𝚺𝑿𝒀 𝚺𝒀𝒀

𝑼,𝑽

1 0 0
0 1 0
0 0 1

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

1 0 0
0 1 0
0 0 1

for 𝑖 ≠ 𝑗
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

How to solve it? ➢ Lagrange Multipliers!

𝑳 = 𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽) + 𝛼 𝑼𝑻𝚺𝒀𝒀𝑼 − 𝑰 + 𝛽(𝑽𝑻𝚺𝒀𝒀𝑽 − 𝑰)

Lagrange function

➢ And then find stationary points of 𝐿:
𝜕𝐿

𝜕𝑼
= 0

𝜕𝐿

𝜕𝑽
= 0

𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝚺𝒀𝒀

−𝟏𝚺𝑿𝒀
𝑻 𝑼 = 𝝀𝑼

𝚺𝒀𝒀
−𝟏𝚺𝑿𝒀

𝑻 𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝑽 = 𝝀𝑽 where 𝜆 = 4𝛼𝛽

for 𝑖 ≠ 𝑗



40

Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝚺𝒀𝒀

−𝟏𝚺𝑿𝒀
𝑻 𝑼 = 𝝀𝑼

𝚺𝒀𝒀
−𝟏𝚺𝑿𝒀

𝑻 𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝑽 = 𝝀𝑽 where 𝜆 = 4𝛼𝛽

Eigenvalue 

equations

Eigenvalues

Eigenvectors

➢ Can solve these eigenvalue 

equations with Singular Value 

Decomposition (SVD)

𝑻 ≜ 𝚺𝑿𝑿
− Τ𝟏 𝟐𝚺𝑿𝒀𝚺𝒀𝒀

− Τ𝟏 𝟐

𝑼∗, 𝑽∗ = (𝚺𝑿𝑿
− Τ𝟏 𝟐𝑼𝑺𝑽𝑫, 𝚺𝒀𝒀

− Τ𝟏 𝟐𝑽𝑺𝑽𝑫)

for 𝑖 ≠ 𝑗
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

1
Linear projections 

maximizing correlation

2 Orthogonal projections

3
Unit variance of the 

projection vectors
· · · · · ·

Text Image
𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚

for 𝑖 ≠ 𝑗
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Exploring Deep 

Correlation Networks
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Same objective function as CCA:

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

And need to compute gradients:

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑈

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑉

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image
𝒀′𝑿′

Training procedure:

1. Pre-train the models 

parameters using 

denoising autoencoders

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models 

parameters using 

denoising autoencoders

2. Optimize the CCA 

objective functions using 

large mini-batches or 

full-batch (L-BFGS)

· · · · · ·
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Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)
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Jointly optimize for DCCA and 

autoencoders loss functions

➢ A trade-off between multi-view 

correlation and reconstruction 

error from individual views

Wang et al., ICML 2015



Deep Correlational Neural Network

1. Learn a shallow CCA autoencoder (similar to 1 

layer DCCAE model)

2. Use the learned weights for initializing the 

autoencoder layer

3. Repeat procedure

Chandar et al., Neural Computation, 2015
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Multivariate Statistics

▪ Multivariate analysis of variance (MANOVA)

▪ Principal components analysis (PCA)

▪ Factor analysis 

▪ Linear discriminant analysis (LDA)

▪ Canonical correlation analysis (CCA)

▪ Correspondence analysis

▪ Canonical correspondence analysis 

▪ Multidimensional scaling

▪ Multivariate regression

▪ Discriminant analysis
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Multi-View 

Clustering
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Data Clustering

· · ·

Image

How to discover groups in your data?

K-mean is a simple clustering algorithm 

based on competitive learning

• Iterative approach 

o Assign each data point to one 

cluster (based on distance metric)

o Update cluster centers 

o Until convergence

• “Winner takes all”

Clustering definition: partition a set of data samples such that 

similar samples are grouped, and dissimilar samples are divided
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“Soft” Clustering: Nonnegative Matrix Factorization

X F

G

=

Given: Nonnegative n x m matrix M (all entries ≥ 0) 

Want: Nonnegative matrices F (n x r) and G (r x m),

s.t. X = FG.

➢ easier to interpret

➢ provide better results in information retrieval, clustering
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Semi-NMF and Other Extensions

Ding et al., TPAMI2015

· · ·

Image
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Deep Semi-NMF Model

Trigerous et al., TPAMI 2015
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Multi-View Clustering

· · · · · ·

Text Image

· · ·

Audio

Learn data partitioning from multiple views (modalities)

Views: different sources in diverse domains or obtained 

from various feature collectors or modalities

Example: Multiple views in computer vision - LBP, SIFT, HOG

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Principles of Multi-View Clustering

2

Two important principles:

Complementarity principle: multiple views needed 

to get more comprehensive and accurate descriptions

1 Consensus principle: maximize consistency across 

multiple distinct views

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018
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Multi-view subspace clustering

Definition: learns a unified feature representation from 

all the view subspaces by assuming that all views share 

this representation
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Enforcing Data Clustering in Deep Networks

· · · · · ·
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· · · · · ·
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How to enforce data clustering in our 

(multimodal) deep learning 

algorithms?
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Deep Matrix Factorization

Li and Tang, MMML 2015
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Other Multi-View Clustering Approaches

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Graph-based clustering: search for a fusion graph (or 

network) across all views and then perform clustering
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Other Multi-View Clustering Approaches

Yan Yang and Hao Wang, Multi-view Clustering: A Survey, Big data mining and analytics, Volume 1, Number 2, June 2018

Co-training: bootstraps the clustering of different views 

by using the learning knowledge from other views
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Auto-Encoder in 

Auto-Encoder Network



Deep Canonically Correlated Autoencoders (DCCAE)
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Multi-view Latent “Intact” Space

Given multiple views 𝑧𝑖 from the same “object”:

1) There is an “intact” representation which is complete and not damaged

2) The views 𝑧𝑖 are partial (and possibly degenerated) representations 

of the intact representation

Xu et al., TPAMI 2015



Auto-Encoder in Auto-Encoder Network
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Zhang et al., CVPR 2019
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