
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 7.1: Multimodal alignment

* Original version co-developed with Tadas Baltrusaitis



Lecture objectives

▪ Multimodal alignment
▪ Implicit

▪ Explicit

▪ Explicit signal alignment
▪ Dynamic Time Warping

▪ Canonical Time Warping

▪ Attention models in deep learning (implicit and 
explicit alignment)
▪ Soft attention

▪ Hard attention

▪ Spatial Transformer Networks
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Administrative Stuff



Upcoming Schedule

▪ First project assignment:

▪ Proposal presentation (10/1 and 10/3) 

▪ First project report (Sunday 10/6)

▪ Midterm project assignment

▪ Midterm presentations (11/5 and 11/7)

▪ Midterm report (Sunday 11/10)

▪ Final project assignment

▪ Final presentation (12/3 & 12/5)

▪ Final report (Sunday 12/8)
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Multi-modal alignment



Multimodal-alignment

▪ Multimodal alignment – finding relationships 

and correspondences between two or more 

modalities

▪ Two types

▪ Explicit – alignment is the task in itself

▪ Implicit / Latent – alignment helps when 

solving a different task (for example 

“Attention” models)

▪ Examples ?

▪ Images with captions

▪ Recipe steps with a how-to video

▪ Phrases/words of translated sentences
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Explicit multimodal-alignment

▪ Explicit alignment - goal is to find correspondences 

between modalities

▪ Aligning speech signal to a transcript

▪ Aligning two out-of sync sequences

▪ Co-referring expressions



Implicit multimodal-alignment

▪ Implicit alignment - uses internal latent alignment of 

modalities in order to better solve various problems

▪ Machine Translation

▪ Cross-modal retrieval

▪ Image & Video Captioning

▪ Visual Question Answering
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Explicit alignment



Temporal sequence alignment

Applications:

- Re-aligning asynchronous 

data

- Finding similar data across 

modalities (we can estimate 

the aligned cost)

- Event reconstruction from 

multiple sources



Let’s start unimodal – Dynamic Time Warping

▪ We have two unaligned temporal unimodal

signals

▪ 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑛𝑥 ∈ ℝ𝑑×𝑛𝑥

▪ 𝐘 = 𝒚1, 𝒚2, … , 𝒚𝑛𝑦 ∈ ℝ𝑑×𝑛𝑦

▪ Find set of indices to minimize the alignment 

difference:

▪ Where 𝒑𝑥 and 𝒑
𝑦

are index vectors of same 

length

▪ Dynamic Time Warping is designed to find 

these index vectors

𝐿(𝒑𝑡
𝑥, 𝒑𝑡

𝑦
) = 

𝑡=1

𝑙

𝒙𝒑𝑡𝑥 − 𝒚𝒑𝑡
𝑦

2

2



Dynamic Time Warping continued

Lowest cost path in a cost matrix

▪ Restrictions?
▪ Monotonicity – no going back in 

time

▪ Continuity  - no gaps

▪ Boundary conditions - start and 

end at the same points

▪ Warping window - don’t get too far 

from diagonal

▪ Slope constraint – do not insert or 

skip too much

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)



Dynamic Time Warping continued

Lowest cost path in a cost matrix

▪ Solved using dynamic 

programming while respecting 

the restrictions

(𝒑1
𝑥, 𝒑1

𝑦
)

(𝒑𝑙
𝑥, 𝒑𝒍

𝑦
)

(𝒑𝑡
𝑥 , 𝒑𝒕

𝑦
)
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DTW alternative formulation

Replication doesn’t change the objective!

𝐿(𝒑𝑥 , 𝒑
𝑦
) = 

𝑡=1

𝑙

𝒙𝒑𝑡𝑥
− 𝒚𝒑𝑡

𝑦

2

2

= 𝐗𝐖𝑥
=

= 𝐘𝐖y

Alternative objective:

𝐿(𝑾𝒙,𝑾𝒚) = 𝑿𝑾𝑥 − 𝒀𝑾𝑦 𝐹

2
𝑿, 𝒀 – original signals (same #rows, possibly 

different #columns) 

𝑾𝑥,𝑾𝑦 - alignment matrices

Frobenius norm 𝑨 𝐹
2 = σ𝑖σ𝑗 𝑎𝑖,𝑗

2

𝑾𝒙

𝑾𝒚



▪ Computationally complex

▪ Sensitive to outliers

▪ Unimodal!

m sequences

DTW – Some Limitations
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Canonical Correlation Analysis reminder

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰 , 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎

1
Linear projections maximizing 

correlation

2 Orthogonal projections

3
Unit variance of the projection 

vectors
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Canonical Correlation Analysis reminder

▪ When data is normalized it is actually equivalent to smallest RMSE 

reconstruction

▪ CCA loss can also be re-written as:

𝐿(𝑼, 𝑽) = 𝐔𝑇𝐗 − 𝐕𝑇𝐘 𝐹
2
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subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰, 𝒖(𝑗)
𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎



Canonical Time Warping

▪ Dynamic Time Warping + Canonical Correlation Analysis 

= Canonical Time Warping

▪ Allows to align multi-modal or multi-view (same modality 

but from a different point of view)

▪ 𝑾𝒙,𝑾𝒚 – temporal alignment

▪ 𝑼,𝑽 – cross-modal (spatial) alignment

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009]

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2



Canonical Time Warping

[Canonical Time Warping for Alignment of Human Behavior, Zhou and De la Tore, 2009, NIPS]

Optimized by Coordinate-descent – fix one set of parameters, 

optimize another

Generalized Eigen-decomposition

Gauss-Newton

𝐿(𝑼, 𝑽,𝑾𝒙,𝑾𝒚) = 𝐔𝑇𝐗𝐖𝐱 − 𝐕𝑇𝐘𝐖𝐲 𝐹

2

𝑾𝒙,𝑾𝒚 𝑼,𝑽



(1) Time warping

(2) Spatial embedding

Generalized Time warping

▪ Generalize to multiple sequences all of different 

modality

▪ 𝑾𝒊 – set of temporal alignments

▪ 𝑼𝒊 – set of cross-modal (spatial) alignments

[Generalized Canonical Time Warping, Zhou and De la Tore, 2016, TPAMI]

𝐿(𝑼𝒊,𝑾𝒊) =

𝑖=1



𝑗=1

𝐔𝑖
𝑇𝐗i𝐖i − 𝐔𝑗

𝑇𝐗j𝐖𝑗 𝐹

2
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Alignment examples (unimodal)

CMU Motion Capture

Subject 1: 199 frames

Subject 2: 217 frames

Subject 3: 222 frames

Weizmann

Subject 1: 40 frames

Subject 2: 44 frames

Subject 3: 43 frames



Alignment examples (multimodal)



Canonical time warping - limitations

▪ Linear transform between modalities

▪ How to address this?



Deep Canonical Time Warping

▪ Could be seen as generalization of DCCA and GTW

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

𝐿(𝜽1, 𝜽2,𝑾𝒙,𝑾𝒚) = 𝑓𝜽1(𝐗)𝐖𝐱 − 𝑓𝜽1(𝐘)𝐖𝐲 𝐹

2



Deep Canonical Time Warping

▪ The projections are orthogonal (like in DCCA)

▪ Optimization is again iterative:

▪ Solve for alignment (𝑾𝒙,𝑾𝒚) with fixed projections (𝜽1, 𝜽2)

▪ Eigen decomposition

▪ Solve for projections (𝜽1, 𝜽2) with fixed alignment (𝑾𝒙,𝑾𝒚)

▪ Gradient descent

▪ Repeat till convergence

[Deep Canonical Time Warping, Trigeorgis et al., 2016, CVPR]

𝐿(𝜽1, 𝜽2,𝑾𝒙,𝑾𝒚) = 𝑓𝜽1(𝐗)𝐖𝐱 − 𝑓𝜽1(𝐘)𝐖𝐲 𝐹

2
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Implicit alignment



Implicit alignment

▪ We looked how to explicitly align temporal data

▪ Could use that as an internal (hidden) step in 

our models?

▪ Can we instead encourage the model to align 

data when solving a different problem?

▪ Yes!

▪ Graphical models

▪ Neural attention models (focus of today’s lecture)
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Attention models



Attention in humans

▪ Foveal vision – we only see in “high resolution” in 2 degrees of 

vision

▪ We focus our attention selectively to certain words (for example our 

names)

▪ We attend to relevant speech in a noisy room



Attention models in deep learning

▪ Many examples of attention models in recent years!

▪ Why:

▪ Allows for implicit data alignment

▪ Good results empirically

▪ In some cases faster (don’t need to focus on all the image)

▪ Better Interpretability



Types of Attention Models

▪ Recent attention models can be roughly split into 

three major categories

1. Soft attention

▪ Acts like a gate function. Deterministic inference.

2. Transform network

▪ Warp the input to better align with canonical view

3. Hard attention

▪ Includes stochastic processes. Related to reinforcement 

learning.
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Soft attention



Machine Translation

▪ Given a sentence in one language translate it to another

▪ Not exactly multimodal task – but a good start! Each 

language can be seen almost as a modality.

Dog on the beach        le chien sur la plage



Machine Translation with RNNs

▪ A quick reminder about encoder 

decoder frameworks

▪ First we encode the sentence

▪ Then we decode it in a different 

language

le chien la plagesur

Decoder

Dog on

Context / 

embedding / 

sentence 

representation

Encoder

the beach



Machine Translation with RNNs

▪ What is the problem with this?

▪ What happens when the sentences are very long?

▪ We expect the encoders hidden state to capture everything in a 

sentence, a very complex state in a single vector, such as

The agreement on the European Economic 

Area was signed in August 1992.

L’ accord sur la zone économique

européenne a été signé en août 1992. 



Decoder – attention model

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Dog

Encoder

Attention 

module / 

gate

[Bahdanau et al., “Neural Machine Translation 

by Jointly Learning to Align and Translate”, ICLR 

2015]

Hidden state 𝒔0

Context 𝒛𝟎

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓



Decoder – attention model

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Dog

Encoder

Attention 

module / 

gate

on

Hidden state 𝒔1

Context 𝒛𝟏

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓

[Bahdanau et al., “Neural Machine Translation 

by Jointly Learning to Align and Translate”, ICLR 

2015]



Decoder – attention model

▪ Before encoder would just take the final hidden state, now we 

actually care about the intermediate hidden states

le chien la plagesur

Encoder

Attention 

module / 

gate

on the

Hidden state 𝒔2

Context 𝒛𝟐

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓

[Bahdanau et al., “Neural Machine Translation 

by Jointly Learning to Align and Translate”, ICLR 

2015]



How do we encode attention

▪ Before:

▪ 𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛), where 𝒛 = 𝒉𝑇, 

and 𝒔𝑖 - the current state of the decoder

▪ Now:

▪ 𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1, 𝒙 = 𝑔(𝑦𝑖−1, 𝒔𝑖 , 𝒛𝑖)

▪ Have an attention “gate” 

▪ A different context 𝒛𝑖 used at each time step!

▪ 𝒛𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗𝒉𝑗

𝛼𝑖𝑗 - the (scalar) attention for word j at generation step i



MT with attention

So how do we determine 𝛼𝑖𝑗, 

▪ 𝛼𝑖,𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

- softmax, making sure they sum to 1

Where:

▪ 𝑒𝑖𝑗 = 𝒗𝑇 𝜎 𝑊𝑠𝑖−1 + 𝑈ℎ𝑗
a feedforward network that can tell us given the current state of 

decoder how important the current encoding is now

𝒗, 𝑊,𝑈– learnable weights

𝑧𝑖 = σ𝑗=𝑖
𝑇𝑥 𝛼𝑖𝑗ℎ𝑗 expectation of the context (a fancy way to 

say it’s a weighted average)



MT with attention

Basically we are using a neural network to tell us where a 

neural network should be looking!

▪ We can use with RNN, LSTM or GRU

▪ Encoder being used is the same structure as before

▪ Can use uni-directional

▪ Can use bi-directional

▪ Model can be trained using our regular back-propagation 

through time, all of the modules are differentiable



Does it work?



MT with attention recap

▪ Get good translation results (especially for long 

sentences)

▪ Also get a (soft) alignment of sentences in 

different languages

▪ Extra interpretability of method functioning

▪ How do we move to multimodal?



Visual captioning with soft attention

[Show, Attend and Tell: Neural 

Image Caption Generation with 

Visual Attention, Xu et al., 2015] 



Recap RNN for Captioning

Why might we not want to focus on the final layer?

Bird in the sky
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Looking at more fine grained features

Distribution 

over L 

locations

Expectation over 

features: D

𝑎1

𝑠0 𝑠1

𝑧1 𝑦0

𝑎2 𝑑1

𝑠2

𝑧2 𝑦1

𝑎3 𝑑2

First word

Output 

word



Soft attention

▪ Allows for latent data alignment

▪ Allows us to get an idea of what the network “sees”

▪ Can be optimized using back propagation

▪ Good at paper naming!
▪ Show, Attend and Tell (extension of Show and Tell)

▪ Listen, Attend and Walk

▪ Listen, Attend and Spell

▪ Ask, Attend and Answer
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Spatial Transformer 

networks



Some limitations of grid based attention

▪ Can we fixate on small parts of image but still have easy 

end-to-end training?
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Spatial Transformer Networks

Can we make this 

function differentiable?
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Spatial Transformer Networks

Can we make this 

function differentiable?

Idea: Function mapping pixel 

coordinates (𝑥𝑡, 𝑦𝑡) of output to 

pixel coordinates (𝑥𝑠, 𝑦𝑠) of 

input 

𝑥𝑖
𝑠

𝑦𝑖
𝑠 =

𝜃1,1 𝜃1,2 𝜃1,3
𝜃2,1 𝜃2,2 𝜃2,3

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1
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Spatial Transformer Networks

Network “attends” to 

input by predicting 𝜃

Idea: Function mapping pixel 

coordinates (𝑥𝑡, 𝑦𝑡) of output to 

pixel coordinates (𝑥𝑠, 𝑦𝑠) of 

input 

𝑥𝑖
𝑠

𝑦𝑖
𝑠 =

𝜃1,1 𝜃1,2 𝜃1,3
𝜃2,1 𝜃2,2 𝜃2,3

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

Can we make this 

function differentiable?
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Spatial Transformer Networks
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Spatial Transformer Networks



Examples on real world data

▪ Results on traffic sign recognition

Code available http://torch.ch/blog/2015/09/07/spatial_transformers.html

http://torch.ch/blog/2015/09/07/spatial_transformers.html


Recap on Spatial Transformer Networks

▪ Differentiable so we can just use back-prop for training end-to-end

▪ Can be used with complex transformations to focus on an image

▪ Affine and Piece-Wise Affine, Perspective, This Plate Splines

▪ We can use it instead of grid based soft and hard attention for multi-

modal tasks
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Glimpse Network

(Hard Attention)



Hard attention

▪ Soft attention requires computing a representation for the whole 

image or sentence

▪ Hard attention on the other hand forces looking only at one part

▪ Main motivation was reduced computational cost rather than 

improved accuracy (although that happens a bit as well)

▪ Saccade followed by a glimpse – how human visual system 

works

[Recurrent Models of Visual Attention, Mnih, 2014]

[Multiple Object Recognition with Visual Attention, 

Ba, 2015]



Hard attention examples



Glimpse Sensor

▪ Looking at a part of an image at different scales

▪ At a number of different scales combined to a single multichannel 

image (human retina like representation)

▪ Given a location 𝑙𝑡 output an image summary at that location
[Recurrent Models of Visual Attention, Mnih, 2014]



Glimpse network

▪ Combining the Glimpse and the location of the glimpse into a joint network

▪ The glimpse is followed by a feedforward network (CNN or a DNN)

▪ The exact formulation of how the location and appearance are combined 

varies, the important thing is combining what and where

▪ Differentiable with respect to glimpse parameters but not the location



Overall Architecture - Emission network 

▪ Given an image a glimpse 

location 𝑙𝑡, and optionally an 

action 𝑎𝑡
▪ Action can be:

▪ Some action in a dynamic 

system – press a button etc.

▪ Classification of an object

▪ Word output

▪ This is an RNN with two output 

gates and a slightly more 

complex input gate!



Recurrent model of Visual Attention (RAM)

▪ Sample locations of glimpses 

leading to updates in the network

▪ Use gradient descent to update the 

weights (the glimpse network 

weights are differentiable)

▪ The emission network is an RNN

▪ Not as simple as backprop but 

doable

▪ Turns out this is very similar and in 

some cases equivalent to 

reinforcement learning using the 

REINFORCE learning rule 

[Williams, 1992]
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Multi-modal alignment

recap



Multimodal-alignment recap

▪ Explicit alignment - aligns two or more modalities (or 

views) as an actual task. The goal is to find 

correspondences between modalities

▪ Dynamic Time Warping

▪ Canonical Time Warping

▪ Deep Canonical Time Warping

▪ Implicit alignment - uses internal latent alignment of 

modalities in order to better solve various problems

▪ Attention models

▪ Soft attention

▪ Spatial transformer networks

▪ Hard attention


