

Language Technologies Institute

Multimodal Machine Learning

Lecture 5.2: Alignment and Structured Representations

Louis-Philippe Morency

Objectives of today's class

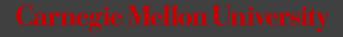
- Hard Attention Glimpse model
- Audio Representations and Alignment
 - Connectionist Temporal Classification (CTC)
- Language compositionality and structure
 - Constituency and dependency parsing
- Structured representations
 - Tree-based RNN, Stack LSTM
- VQA and attention models
 - Co-attention, Stacked attention
- Modular neural networks
 - End-to-end learning

Administrative Stuff

Language Technologies Institute

Upcoming Schedule

- First project assignment:
 - Proposal presentation (10/1 and 10/3)
 - First project report (Sunday 10/6)
- Midterm project assignment
 - Midterm presentations (11/5 and 11/7)
 - Midterm report (Sunday 11/10)
- Final project assignment
 - Final presentation (12/3 & 12/5)
 - Final report (Sunday 12/8)



Tuesday October 1st – Team Presentations

1	Youtube-8M	Fan Qian, Xue Xia, Yuwei Qiu, Keyi Yu		
2	OKVQA	Kaixin Ma, Xiaochuang Han, Meiqi Guo, Zeeshan Ashraf		
3	Visual dialogue	Tianwei Yue, Zhihao Zhou, Jiaming Bai, Wenping Wang		
4	Argoverse	Nilesh Choubey, Venkat Srinivasan, Tammy Agrawal, Struthi Bannur, Hitesh Arora		
5		Chang Gao, Zhiyu Min, Yujia Chen, Yongxin Wang		
6	MELD	Aditya Galada, Ritika Mulagalapalli, Roshan Sharma, Siddharth Kannan		
7	MIT states	Syed Ashar Javed, Rishi Madhok, Anshuman Majumdar, Talha Siddiqui		
8		Jing Wen, Bereket Frezgiy, Yansen Wang, Parth Shah		
9	MOSI	Chengfeng Mao, Michelle Ma, Joohyung Shin		

Thursday October 3rd – Team Presentations

9	Argoverse	Seong Hyeon Park, Gyubok Lee, Minseok Kang, Ashwin Jadhav, Manoj Bhat	
8	Dialogue image retrieval	al Evgeniia Razumovskaia, Ksenia Korovina, Jiaxu Zou	
7	Talk the Walk	C R Madhavan, Furqan Khwaja, Harshwardhan Lodha, Anupma Sharan	
6	CLEVR-dialog	Muhammad Shah, Shikib Mehri, Tejas Srinivasan, Vaibhav Kumar	
5	Unsupervised image	Vinayshekhar Bannihatti kumar, Varun Rao, Prakhar Gupta, Mukul Bhutani	
4	MOSEI	Cheng Zhang, Mark Cheung, Yuying Zhu	
3	Audio set	Peter Wu, Muqiao Yang, Zimeng Qiu, Eric Chen & Xinyu Guan	
2	TVQA	Victoria Lin, Lucen Zhao, George Xu	
1	Esports Twitch	Alex Haig, Wenyan Hu, Vivek Pandit, Longxiang Zhang, Guoxi Zhang	

Glimpse Network (Hard Attention)

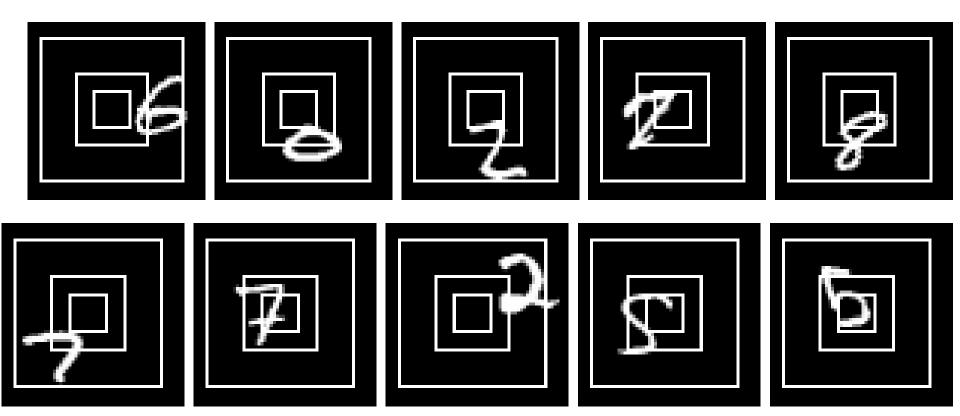
Language Technologies Institute

Hard attention

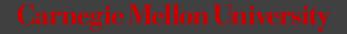
- Soft attention requires computing a representation for the whole image or sentence
- Hard attention on the other hand forces looking only at one part
- Main motivation was reduced computational cost rather than improved accuracy (although that happens a bit as well)
- Saccade followed by a glimpse how human visual system works

[Recurrent Models of Visual Attention, Mnih, 2014] [Multiple Object Recognition with Visual Attention, Ba, 2015]

Hard attention examples

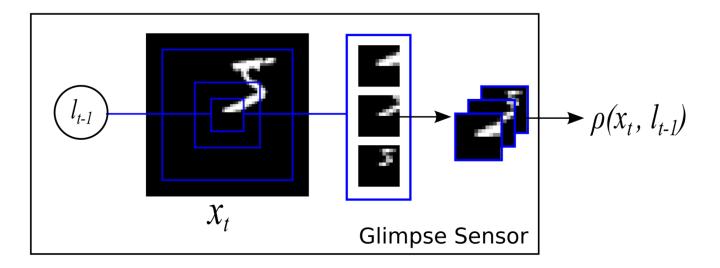






Glimpse Sensor

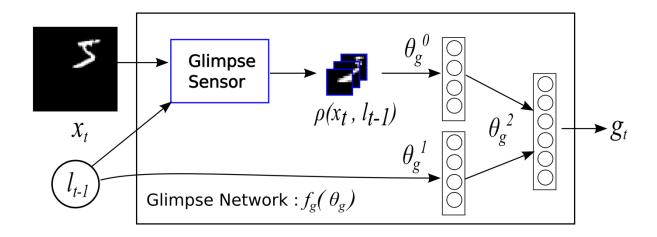
Looking at a part of an image at different scales



- At a number of different scales combined to a single multichannel image (human retina like representation)
- Given a location l_t output an image summary at that location
 [Recurrent Models of Visual Attention, Mnih, 2014]

Glimpse network

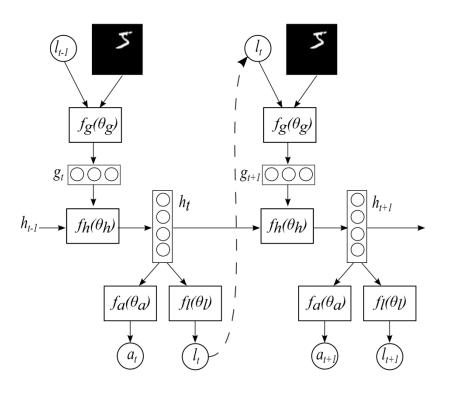
• Combining the Glimpse and the location of the glimpse into a joint network



- The glimpse is followed by a feedforward network (CNN or a DNN)
- The exact formulation of how the location and appearance are combined varies, the important thing is combining what and where
- Differentiable with respect to glimpse parameters but not the location

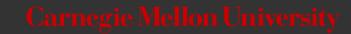
Overall Architecture - Emission network

- Given an image a glimpse location *l_t*, and optionally an action *a_t*
- Action can be:
 - Some action in a dynamic system – press a button etc.
 - Classification of an object
 - Word output
- This is an RNN with two output gates and a slightly more complex input gate!



Sequence-to-Sequence

Language Technologies Institute



Sequence-to-Sequence for Machine Translation

- A quick reminder about encoder decoder frameworks
- First we encode the sentence
- Then we decode it in a different language

Context / embedding / sentence representation

Dog

on

Encoder

chien

sur

la

plage

le

Carnegie Mellon University

beach

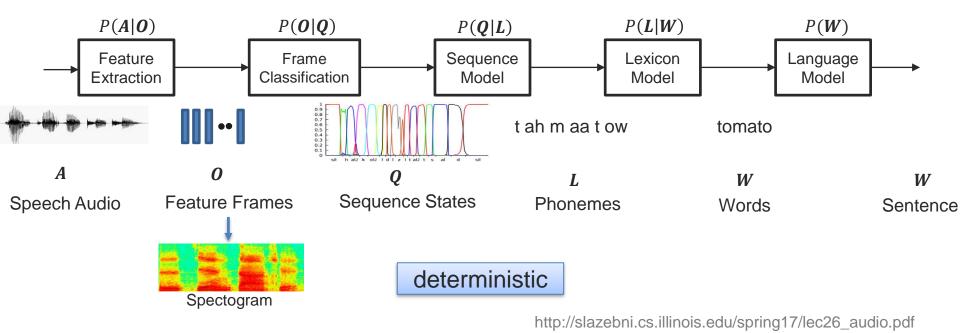
Decode

the

Architecture of Speech Recognition

$$\widehat{\boldsymbol{W}} = \operatorname*{argmax}_{\boldsymbol{W}} P(\boldsymbol{W}|\boldsymbol{O})$$

 $= \underset{W}{\operatorname{argmax}} P(\boldsymbol{A}|\boldsymbol{O}) P(\boldsymbol{O}|\boldsymbol{Q}) P(\boldsymbol{Q}|\boldsymbol{L}) P(\boldsymbol{L}|\boldsymbol{W}) P(\boldsymbol{W})$

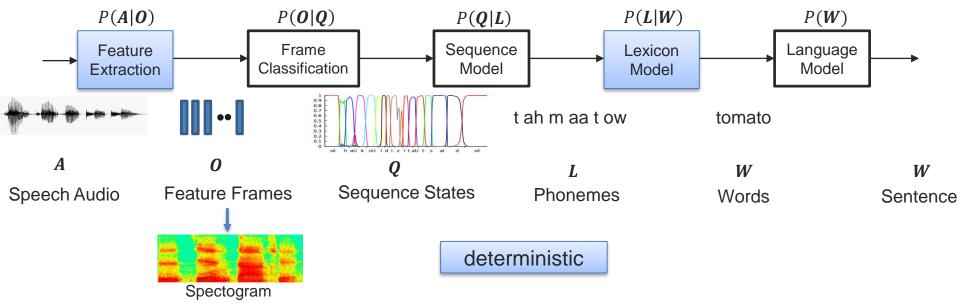


Language Technologies Institute

Architecture of Speech Recognition

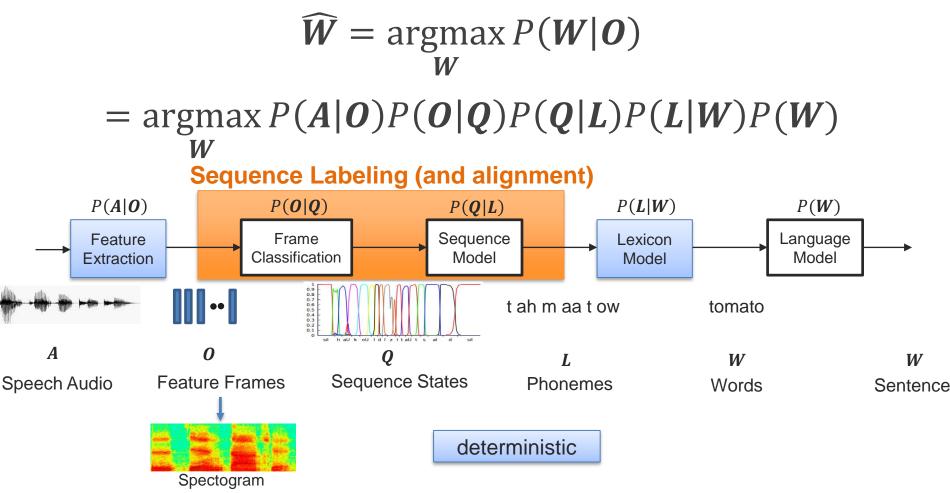
$$\widehat{\boldsymbol{W}} = \operatorname*{argmax}_{\boldsymbol{W}} P(\boldsymbol{W}|\boldsymbol{O})$$

 $= \underset{W}{\operatorname{argmax}} P(\boldsymbol{A}|\boldsymbol{O}) P(\boldsymbol{O}|\boldsymbol{Q}) P(\boldsymbol{Q}|\boldsymbol{L}) P(\boldsymbol{L}|\boldsymbol{W}) P(\boldsymbol{W})$



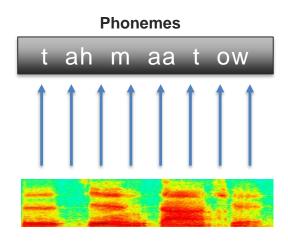
http://slazebni.cs.illinois.edu/spring17/lec26_audio.pdf

Architecture of Speech Recognition



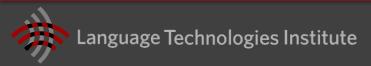
http://slazebni.cs.illinois.edu/spring17/lec26_audio.pdf

Sequence Labeling (and Alignment)

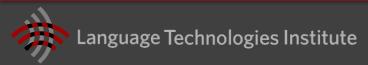


Spectogram

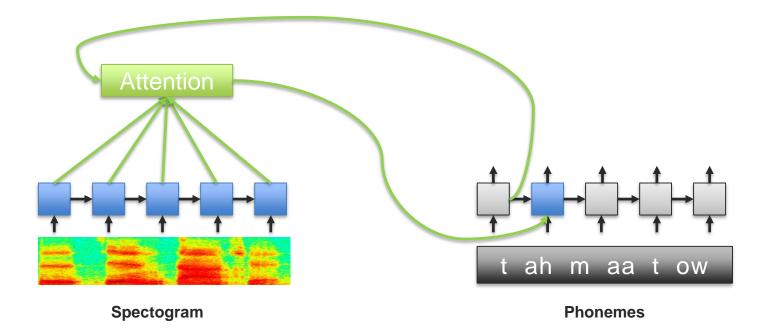
How can we predict the sequence of phoneme labels from the sequence of audio frames?

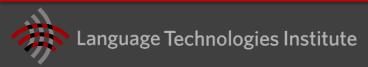


Option 1: Sequence-to-Sequence (Seq2Seq)

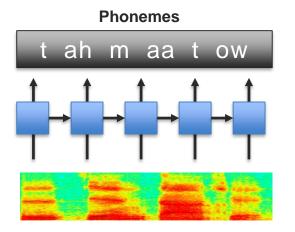


Option 2: Seq2Seq with Attention



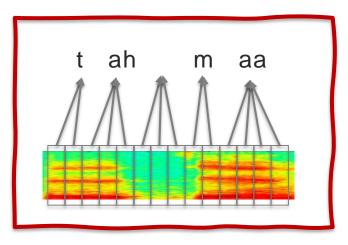


Option 3: Sequence Labeling with RNN

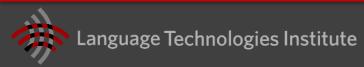


Spectogram

Challenge: many-to-1 alignment



What should be the loss function?



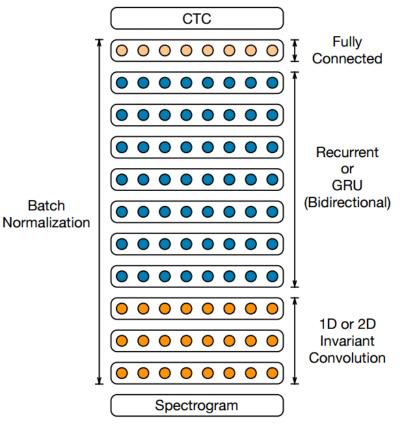
Connectionist Temporal Classification

Language Technologies Institute

CTC is used in speech recognition systems that are almost in par with human performances.

Test set	Deep speech 2	Human
WSJ eval'92	3.60	5.03
WSJ eval'93	4.98	8.08
LibriSpeech test-clean	5.33	5.83
LibriSpeech test-other	13.25	12.69

Deep Speech 2



Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." (2015)

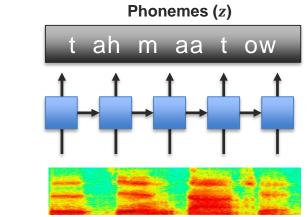
Training examples $S = \{(x_1, z_1), ..., (x_N, z_N)\} \in \mathcal{D}_{\mathcal{X} \times \mathcal{Z}}$

 $x \in \mathcal{X}$ are spectrogram frames $x = (x_1, x_2, ..., x_T)$ $z \in \mathcal{Z}$ are phoneme transcripts $z = (z_1, z_2, ..., z_U)$ defined over the space of labels L

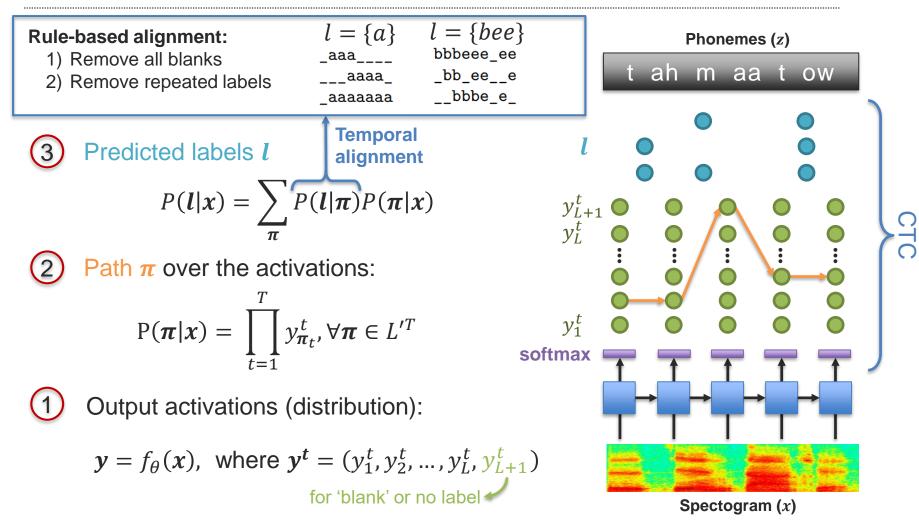
Goal: train temporal classifier $h : \mathcal{X} \to \mathcal{Z}$

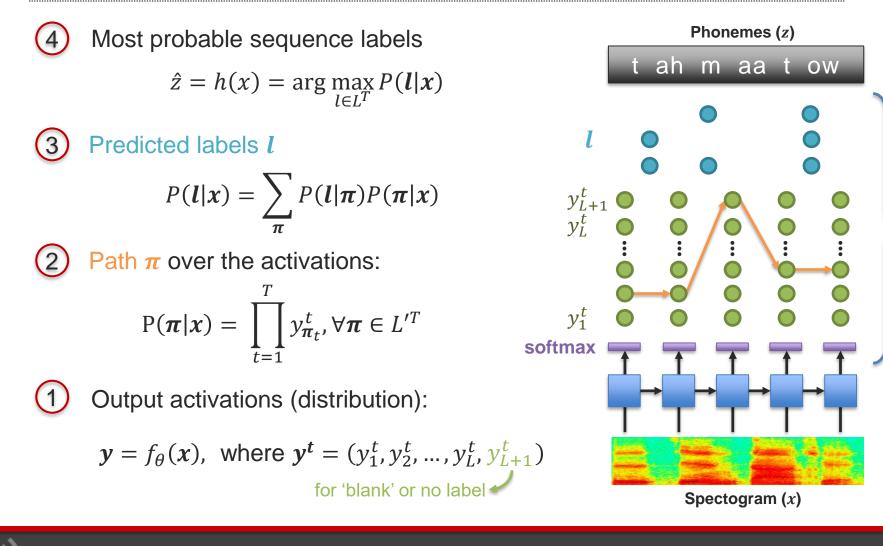
Loss: Negative log likelihood

$$L(S;\theta) = -\sum_{(\boldsymbol{x},\boldsymbol{z})\in S} \ln(p_{\theta}(\boldsymbol{z}|\boldsymbol{x}))$$



Spectogram (x)





CTO

CTC Optimization

4 Most probable sequence labels $z^* = h(x) = \arg \max_{l \in L^T} P(l|x)$ Option 1: Select most probable path π

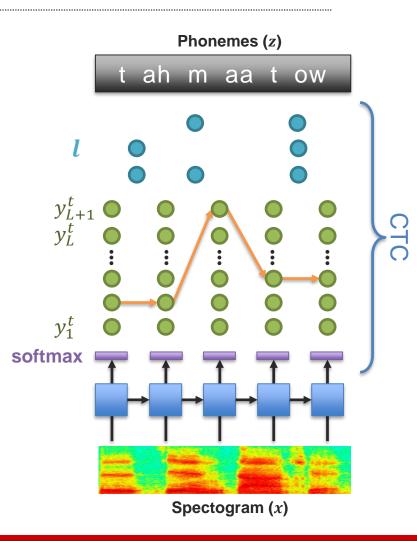
 $\pi^* = \arg \max_{\pi} P(\pi | x)$ Get most probable labels z^* directly from π^*

Option 2: Solve using dynamic programming

Forward-backward algorithm

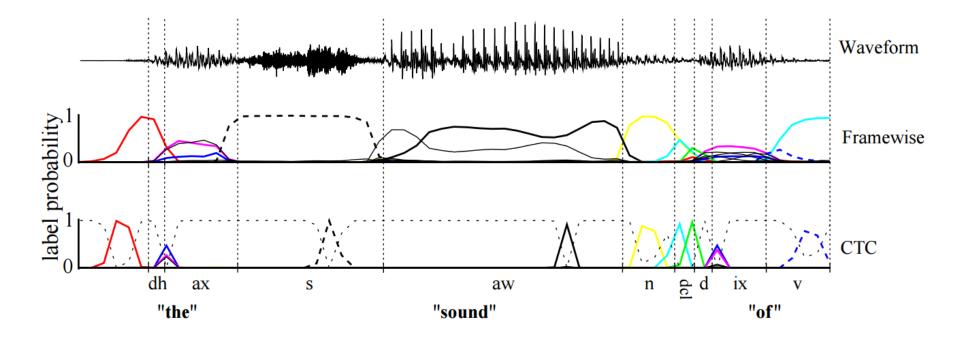
- > Forward variables α
- > Backward variables β

$$P(l|x) = \sum_{t=1}^{T} \sum_{s=1}^{|l|} \frac{\alpha_t(s)\beta_t(s)}{y_{l_s}^t}$$

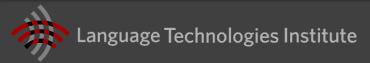


Visualizing CTC Predictions

"Framewise" modeling: Learned using phoneme segmentation (vertical lines)



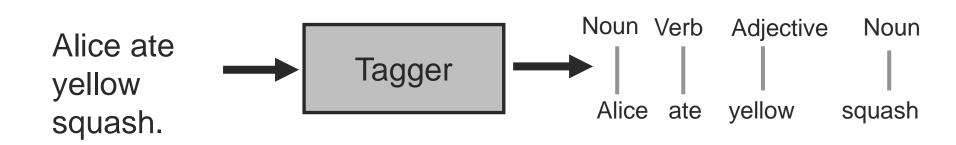
Why are CTC predictions so "peaky"?

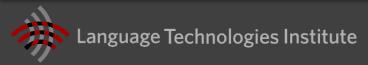


Language Syntax

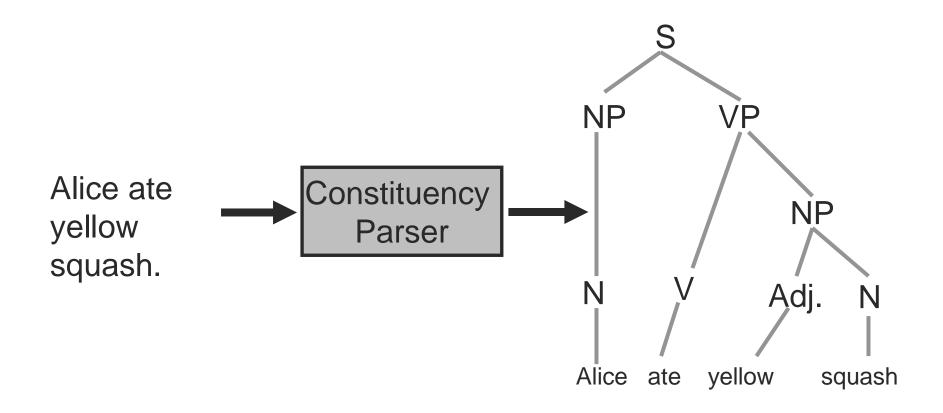
Language Technologies Institute

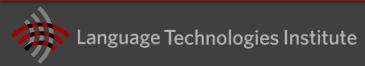
Part-of-Speech Tagging



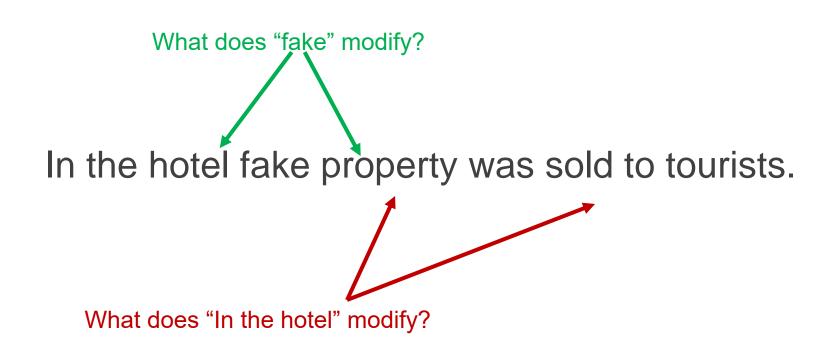


Phrase Structure Tree (Constituency Parsing)





The Importance of Parsing



Phrase Chunking

- Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a sentence.
 - [NP I] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].
 - [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September]

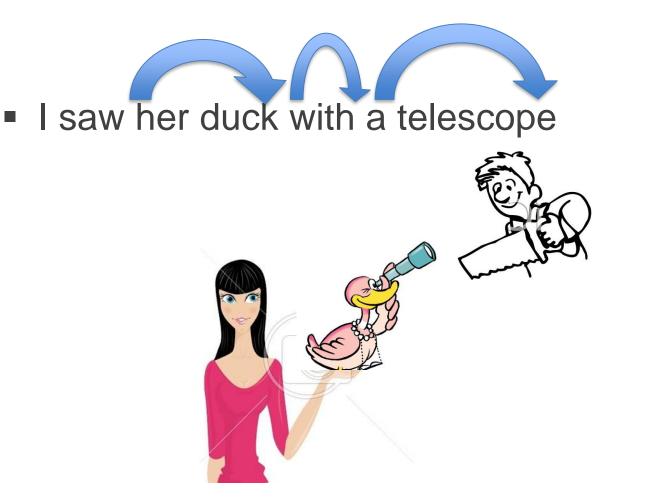
Language Ambiguity

I saw her duck

Language Ambiguity

Language Ambiguity

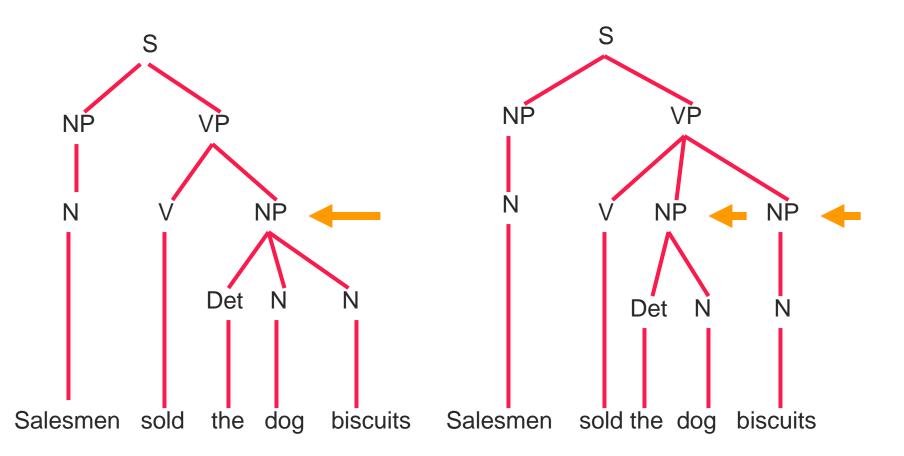
Language Ambiguity

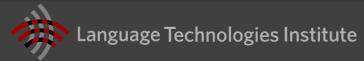


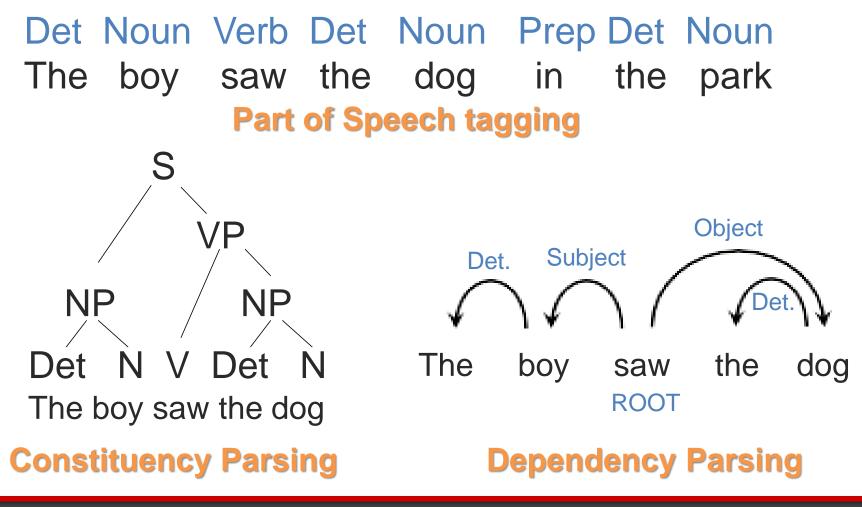


I saw her duck with a telescope

Language Ambiguity





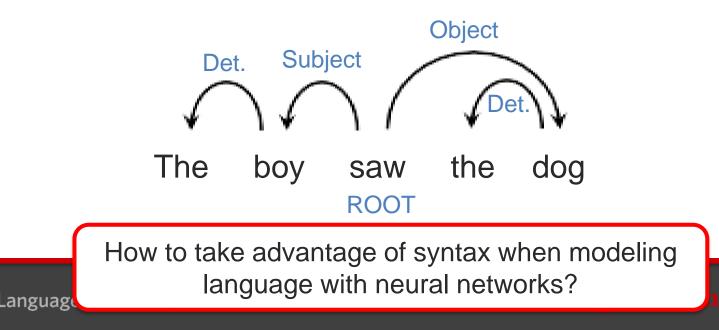


40

Main idea: Syntactic structure consists of *lexical items*, linked by binary asymmetric relations called *dependencies*

- Easier to convert to predicate-argument structure
- > You can try to convert one representation into another

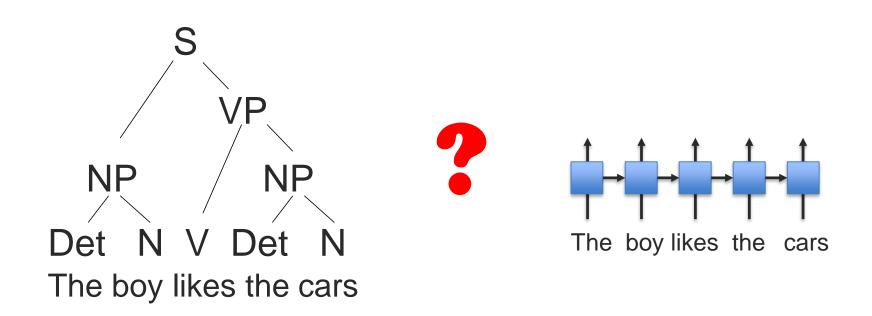
But, in general, these formalisms are not equivalent



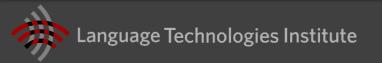
Recursive Neural Network

Language Technologies Institute

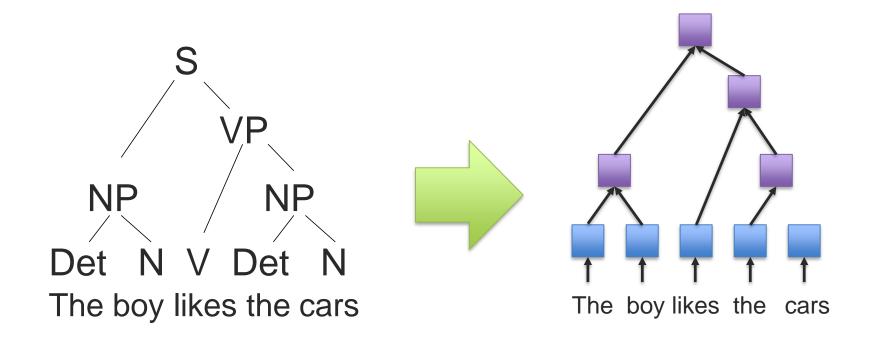
How to Model Syntax with RNNs?

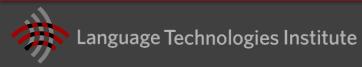


We could use Part-of-Speech tags.



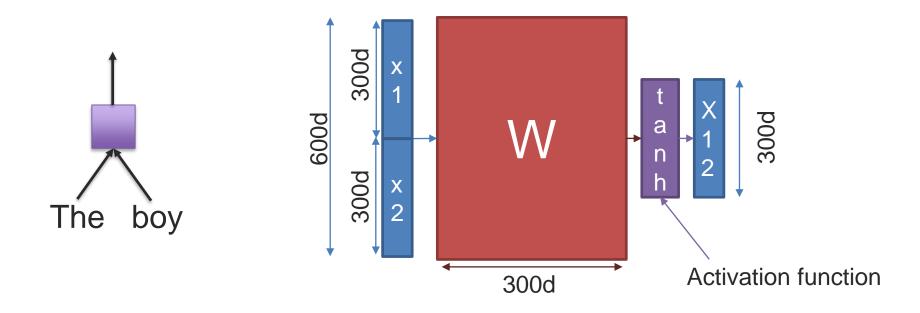
Tree-based RNNs (or Recursive Neural Network)



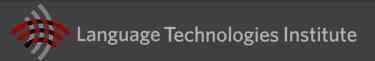


Recursive Neural Unit

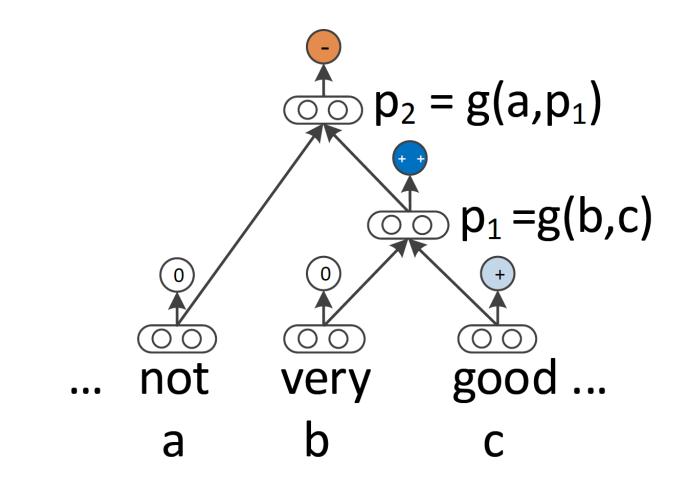
Pair-wise combination of two input features



45



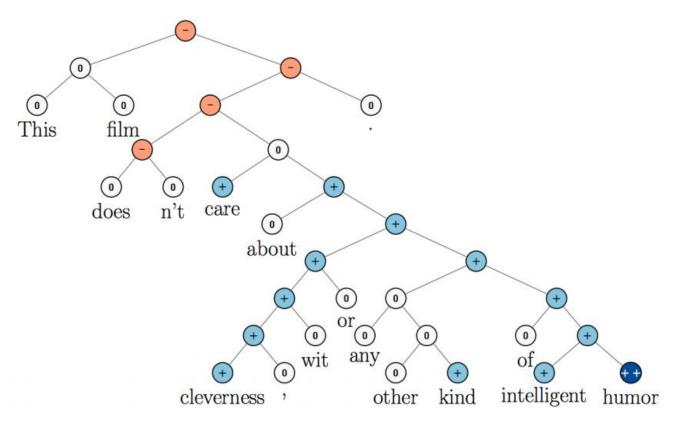
Recursive Neural Network for Sentiment Analysis



Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

Recursive Neural Network for Sentiment Analysis

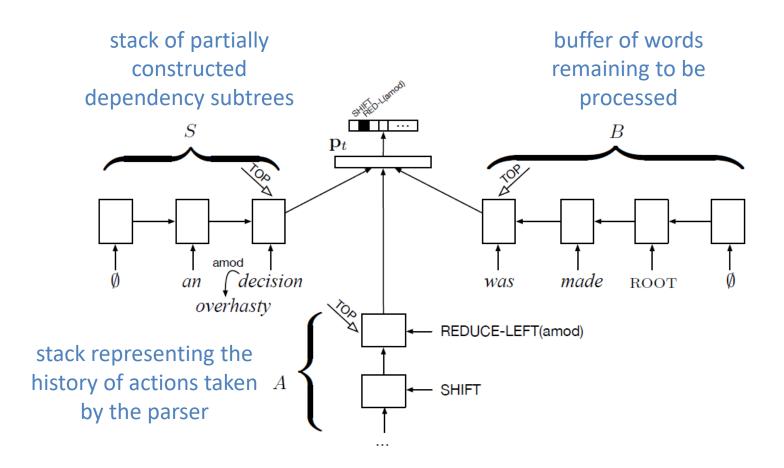
Classification of a sentence using tree-based compositionality of words



Demo: http://nlp.stanford.edu/sentiment/

Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013

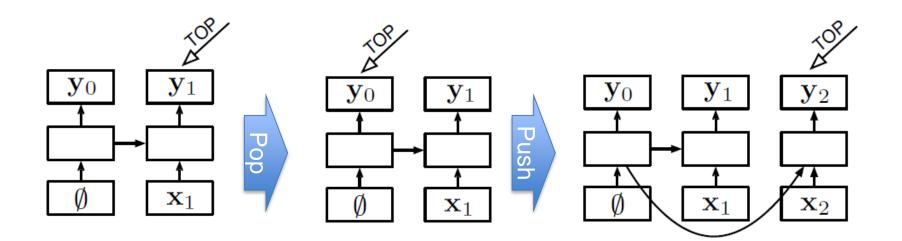
Stack LSTM



Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

48

Stack LSTM



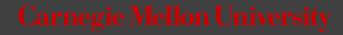
Dyer et al., Transition-Based Dependency Parsing with Stack Long Short-Term Memory, 2015

Visual Question Answering And Attention Models

Language Technologies Institute

Visual Question Answering

Question Is the skateboard airborne? Image Answer yes How can we use attention?



VQA and Attention

Question

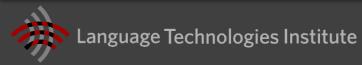
Is the skateboard airborne?

Image

Language can be used to attend the image

Answer

yes



VQA and Attention

Question

Is the skateboard airborne?

Image

Image could also be used to attend the text

Answer

yes



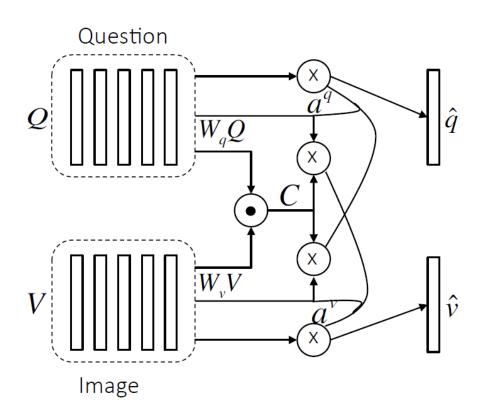
Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016

Co-attention

Question

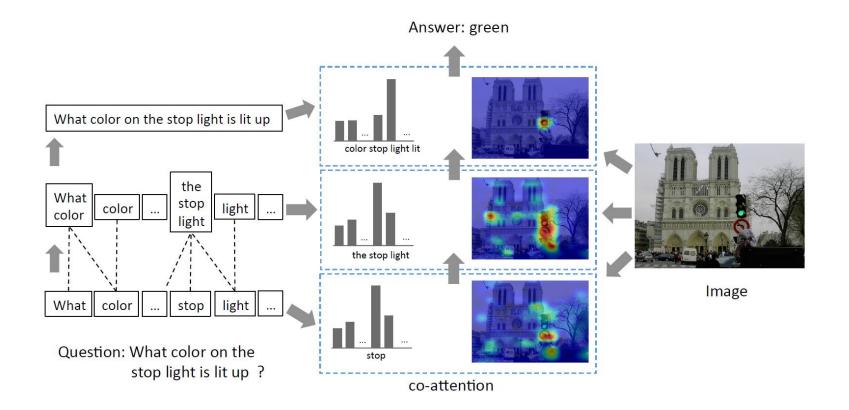
Is the skateboard airborne?

Image



Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016

Hierarchical Co-attention



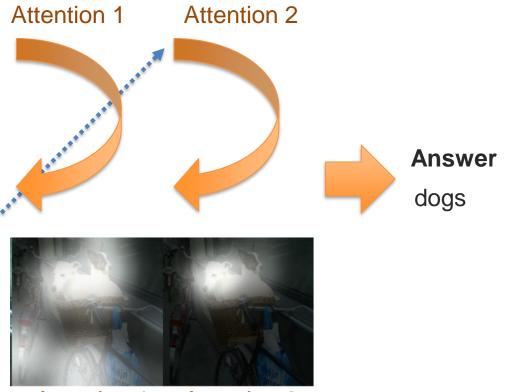
Lu et al., Hierarchical Question-Image Co-Attention for Visual Question Answering, NIPS 2016

Stacked Attentions

Question

What are sitting in the basket on a bicycle?

Image



Attention 1 Attention 2

Yang et al., Stacked Attention Networks for Image Question Answering, CVPR 2016

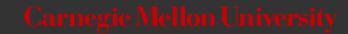
Other Attention-based Models for VQA

- Bottom-up and top-down attention for image captioning and visual question answering, CVPR 2018
 - Adds the idea of object-based representations
- Bilinear Attention Pooling, NIPS 2018
 - Extend low-rank bilinear pooling to multimodal
- Beyond bilinear: Generalized multimodal factorized high-order pooling for visual question answering, IEEE TNNLS, 2018

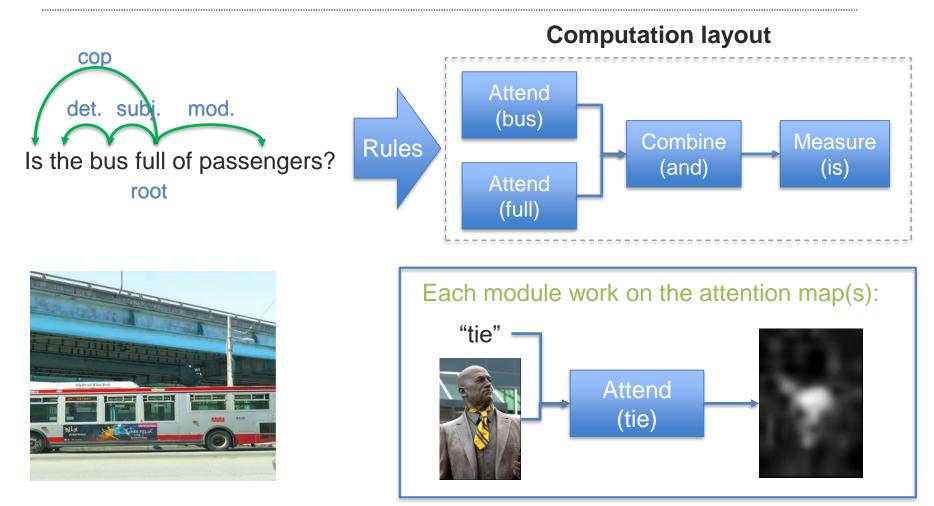
But how to take advantage of language syntax?

Neural Module Networks

Language Technologies Institute



Neural Module Network

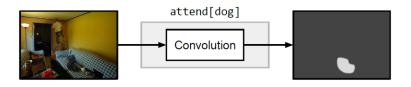


Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016

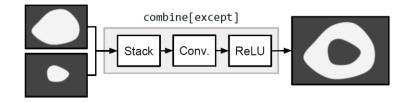
Predefined Set of Modules

1) Analyze the image:

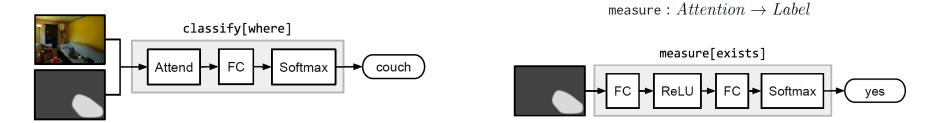
 $\texttt{attend}: Image \to Attention$



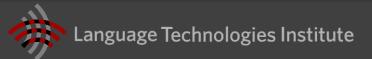
 $\texttt{combine}: Attention \times Attention \rightarrow Attention$



2) Make a prediction

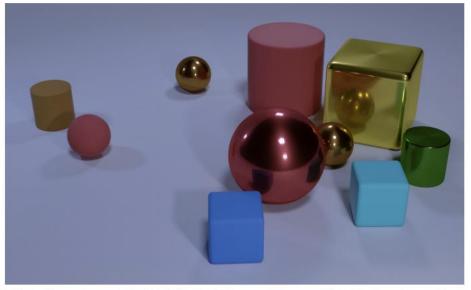


Andreas et al., Deep Compositional Question Answering with Neural Module Networks, 2016



CLEVR: Dataset for Visual Reasoning

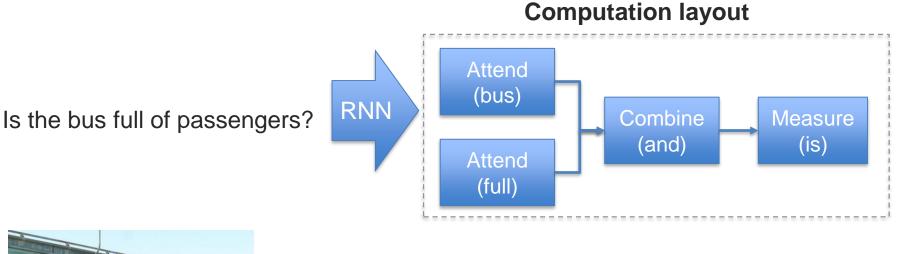
Perfect for a neural module network!



Q: Are there an equal number of large things and metal spheres? Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere? Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere? Q: How many objects are either small cylinders or metal things?

Johnson et al., CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, CVPR 2017

End-to- End Neural Module Network

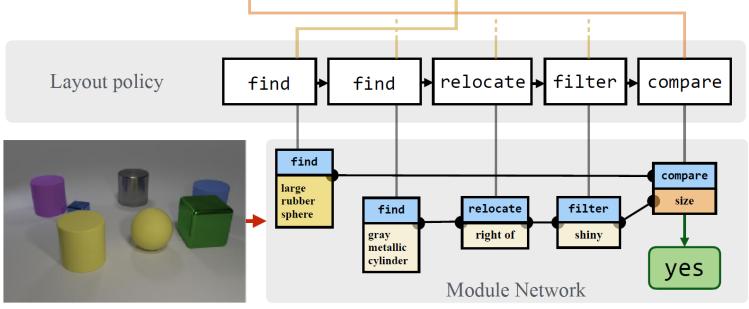


No need to parse the question!

No rule-based creation of the layout!

Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017

There is a shiny object that is right of the gray metallic cylinder; does it have the same size as the large rubber sphere?



Hu et al., Learning to Reason: End-to-End Module Networks for Visual Question Answering, 2017

