

Multimodal Machine Learning

Lecture 7.1: Alignment and Representations

Louis-Philippe Morency

Objectives of today's class

- Contextualized sentence embedding
- Transformer networks
 - Self-attention
 - Multi-head attention
 - Position embeddings
 - Sequence-to-sequence modeling
- Multimodal contextualized embeddings
- Language pre-training
 - BERT pre-training and fine-tuning
- Multimodal pre-training

Administrative Stuff

Upcoming Schedule

- First project assignment:
 - Proposal presentation (10/1 and 10/3)
 - First project report (Sunday 10/6)
- Midterm project assignment
 - Midterm presentations (11/5 and 11/7)
 - Midterm report (Sunday 11/10)
- Final project assignment
 - Final presentation (12/3 & 12/5)
 - Final report (Sunday 12/8)

Midterm Project Report Instructions

- Goal: Evaluate state-of-the-art models on your dataset and identify key issues through a detailed error analysis
 - It will inform the design of your new research ideas
- Report format: 8 pages, 2 column (ICML template)
 - The report should follow a similar structure to a research paper
- Number of SOTA models
 - Teams of 3 should have at least two baseline models
 - Teams of 4 or 5 should have at least three baseline models
- Error analysis
 - This is one of the most important part of this report. You need to understand where previous models can be improved.

Midterm Project Report Instructions

Main report sections:

- Abstract
- Introduction
- Related work
- Problem statement
- Multimodal baseline models
- Experimental methodology
- Results and discussion
- New research ideas

Midterm Presentations

OR

Poster Presentations

Contextualized Sequence Encoding

Sequence Encoding - Contextualization

How to encode this sequence while modeling the interaction between elements (e.g., words)?

Option 1: Bi-directional LSTM:

(e.g., ELMO)

But harder to parallelize...

Sequence Encoding - Contextualization

Option 2: Convolutions

Can be parallelized!

But modeling long-range dependencies require multiple layers

And convolutional kernels are static

Sequence Encoding - Contextualization

Option 3: Self-attention

Can be parallelized!

Long-range dependencies

Dynamic attention weights

Self-Attention

Self-Attention

Self-Attention

What if we want to attend simultaneously to multiple subspaces of x?

What happens if the words are shuffled?

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Simple approach: one-hot encoding

Position embeddings

☐ Position information is not encoded in a self-attention module

How can we encode position information?

Sequence-to-Sequence Using Transformer

Sequence-to-Sequence Modeling

How can we perform seq2seq translation with transformer attention?

How should we connect the encoder and decoder self-attention to the transformer attention?

Contextualized Multimodal Embedding

Multimodal Embeddings

Contextualized Multimodal Embeddings

Any other approach?

Multimodal Transformer

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

Cross-Modal Transformer

Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences, ACL 2019

Language Pre-training

Token-level and Sentence-level Embeddings

Token-level embeddings

Which tasks?

Sentence-level embedding

Which tasks?

Pre-Training and Fine-Tuning

Pre-training

(e.g., language model)

Fine-Tuning

BERT:

Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- 2 Same network architecture for pre-training and fine-tuning

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- Same network architecture for pre-training and fine-tuning
- (3) Can be used learn relationship between sentences
- 4 Models bidirectional and long-range interactions between tokens

BERT: Bidirectional Encoder Representations from Transformers

Advantages:

- Jointly learn representation for token-level and sentence level
- 2 Same network architecture for pre-training and fine-tuning
- 3 Can be used learn relationship between sentences
- Models bidirectional interactions between tokens

Pre-training BERT Model

Masked Language Model

Randomly mask input tokens and then try to predict them

What is the loss function?

Pre-training BERT Model

Next Sentence Prediction

Given two sentences, predict if this is the next one or not

What is the loss function?

Three Embeddings: Token + Position + Sentence

1

Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

How?

1 Sentence-level classification for only one sentence

Examples: sentiment analysis, document classification

2 Token-level classification for only one sentence

Examples: part-of-speech tagging, slot filling

How to compare two sentences?

3 Sentence-level classification for two sentences

Examples: natural language inference

Question-answering: find start/end of the answer in the document

Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?"

Plausible Answer: later laws

Question 2: "What was the name of the 1937 treaty?"

Plausible Answer: Bald Eagle Protection Act

4 Question-answering: find start/end of the answer in the document

Multimodal Pre-training

Multimodal Pre-Training

How to extend to multimodal modalities?

VL-BERT

How to extend to multimodal modalities?

Option 1: Simply concatenate tokens from different modalities

https://arxiv.org/pdf/1908.08530.pdf

M-BERT

How to extend to multimodal modalities?

Option 2: "Shift" language representation based on the other modalities

https://arxiv.org/pdf/1908.05787.pdf