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Multimodal Machine Learning

Lecture 7.2: Generative Models

* Original version co-developed with Tadas Baltrusaitis



Outline

▪ Probabilistic graphical models

▪ Joint probabilistic distribution

▪ Example: creating a graphical model

▪ Bayesian networks

▪ Conditional probability distribution

▪ Dynamic Bayesian Network

▪ Variational Auto Encoder

▪ Generative Adversarial Network

▪ cGAN, infoGAN, cycleGAN
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Probabilistic 

Graphical Models



Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM) 

is a graph formalism for compactly modeling joint 

probability distributions and dependence structures 

over a set of random variables.

▪ Random variables: X1,…,Xn

▪ P is a joint distribution over X1,…,Xn

Why do we want to learn the joint distribution?



Inference for Known Joint Probability Distribution

1 Joint probability for a particular assignment

When we know the joint probability distribution :

𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸)
If A, B C, D and E are discrete 

variables, then P(A,B,C,D, E) 

will be a 5-D tensor (matrix)

𝑃(𝐴 = 1, 𝐵 = ′𝑐𝑎𝑟′, 𝐶 = 2,𝐷 = ′𝑏𝑎𝑛𝑎𝑛𝑎′, 𝐸 = 10)

A specific entry in the 5-D tensor

Two main forms of inference:



Inference for Known Joint Probability Distribution

2
Probability of a subset of variables (query) given 

known assignments of other variables (evidences)

𝑃 𝐴,𝐷 𝐶 = 3)
Use the product rule to marginalize 

the other variables B and E

𝑃 𝐴,𝐷 𝐶 = 3) = ෍

∀𝑏∈𝐵,𝑒∈𝐸

𝑃 𝐴,𝐷, 𝑏, 𝑒 𝐶 = 3)

Use the inverse of product rule

𝑃 𝐴,𝐷 𝐶 = 3) =
1

𝑃(𝐶)
෍

∀𝑏∈𝐵,𝑒∈𝐸

𝑃 𝐴,𝐷, 𝑏, 𝑒 𝐶 = 3)

𝑃 𝑋 𝑌 = 𝑃 𝑋, 𝑌 /𝑃(𝑌)



Inference for Known Joint Probability Distribution

2
Probability of a subset of variables (query) given 

known assignments of other variables (evidences)

𝑃 𝑥 𝑦) = 𝛼 ෍

∀𝑧∈𝑍

𝑃(𝑥, 𝑦, 𝑧)

where 𝑥 is the subset of query variables

𝑦 is the subset of evidence assignments

𝑍 is the set of all other variables (not in 𝑥 or 𝑦)

Can we represent P more compactly?

◼ Key: Exploit independence properties



Independent Random Variables 

▪ Two variables X and Y are independent if

▪ P(X=x|Y=y) = P(X=x) for all values x,y

▪ Equivalently, knowing Y does not change 

predictions of X

▪ If X and Y are independent then:

▪ P(X, Y) = P(X|Y)P(Y) = P(X)P(Y)

▪ If X1,…,Xn are independent then:

▪ P(X1,…,Xn) = P(X1)…P(Xn)

X Y



Conditional Independence

▪ X and Y are conditionally independent given Z if

▪ P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z

▪ Equivalently, if we know Z, then knowing Y does not 

change predictions of X

XY

Z



Graphical Model

▪ A tool that visually illustrate conditional 

independence among variables in a given 

problem.

▪ Consisting of nodes (Random variables or 

States) and edges (Connecting two nodes, 

directed or undirected).

▪ The lack of edge represents conditional 

independence between variables.



Graphical Model

Different types of graphical models: 

▪ Chain, Path, Cycle, Directed Acyclic Graph 

(DAG), Parents and Children



Two Main Types of Graphical Models

Bayesian networks Markov Models (in 2 weeks)

▪ Directed acyclic graph

▪ Conditional dependencies

▪ Undirected graphical model

▪ Cyclic dependencies
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Creating a 

Graphical Model



Example: Inferring Emotion from Interaction Logs

Student Tutoring

System

Logs

Student 

Traits

Emotion?

[Sabourin et al., 2011]



Example: Bayesian Network Representation
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Example: Naïve Bayes Approach
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Appraisal Theory of Emotion

Metal State
(beliefs, goals)

World 

Events

Argues for importance of 

three interrelated concepts 

• World events 

• Mental state 

• Emotional Response 
Body

Expression

Action tendency

Physiological response

If we know two of these 

variables, we can make 

predictions about the third 

Response= f(Env., Mind) 



Example: Bayesian Network Approach
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[Sabourin et al., 2011]

Example: Dynamic Bayesian Network Approach
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Example: Dynamic Bayesian Network Approach
[Sabourin et al., 2011]



Example: Inferring Emotion from Interaction Logs

Student Tutoring

System

[Sabourin et al., 2011]
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Bayesian Networks



Bayesian networks

▪ A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

▪ Syntax:
▪ a set of nodes, one per variable

▪ a directed, acyclic graph (link ≈ "directly influences")

▪ a conditional distribution for each node given its parents:
P (Xi | Parents (Xi))

▪ In the simplest case, conditional distribution 
represented as a conditional probability distribution
(CPD) giving the distribution over Xi for each 
combination of parent values



Bayesian Network (BN)

▪ A specific type of graphical model that is 

represented as a Directed Acyclic Graph.



Example

“I'm at work, neighbor John calls to say my alarm is 
ringing, but neighbor Mary doesn't call. Sometimes it's set 
off by minor earthquakes. Is there a burglar?”

▪ Variables? 

▪ Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

▪ “Causal" knowledge?

▪ A burglar can set the alarm off

▪ An earthquake can set the alarm off

▪ The alarm can cause Mary to call

▪ The alarm can cause John to call
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Example – Network Topology

Alarm

Mary Calls John Calls

Burglary Earthquake



27

Joint Probability in Graphical Models

With chain-rule, the joint probability can be restated:

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃(𝐶, 𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃(𝐷, 𝐸)

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃 𝐷 𝐸 𝑃(𝐸)

The order in applying the chain-rule is arbitrary.

How can we simplify the joint probability even more, 

given the graphical model?

= 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃(𝐵, 𝐶, 𝐷, 𝐸)
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Joint Probability in Graphical Models

With chain-rule, the joint probability can be reshaped:

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝐵, 𝐶, 𝐷, 𝐸 𝑃 𝐵 𝐶, 𝐷, 𝐸 𝑃 𝐶 𝐷, 𝐸 𝑃 𝐷 𝐸 𝑃(𝐸)

X Y XY

Z
Remember these concepts:

Independent variables conditionally independent

In a Bayesian network, each conditional probability for a 

specific variable X only depends on its parents:

𝑃 𝑋| 𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑃 𝑋 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋)

Conditional Probability Distribution (CPD)
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▪ For example, multivariate normal density function or 
Gaussian linear regression (used by Bayes RegressionLinear
Model)

Conditional Probability Distribution (CPD)

X

YZGiven a variable X and its parents (Y and Z):

Definition: probability distribution of X when the assignment of it 

parents is known (Y and Z) 

𝑃 𝑋 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑋 = 𝑃(𝑋|𝑌, 𝑍)

❑ For categorical variable: expressed as a conditional probability table

❑ For continuous variable: expressed as a conditional density function

Y=0 Y=1

P(X=0|Y) 4/6 1/3

P(X=1|Y) 2/6 2/3



Example – Conditional Probability Distributions

Alarm

Mary Calls John Calls

Burglary EarthquakeP(B=1) P(E=1)
.001 .002

B     E     P(A=1)
T     T       .95
T     F       .94
F     T       .29
F     F       .001

A    P(J=1)A   P(M=1)
T     .70
F     .01

T     .90
F     .05



Generative Model: Naïve Bayes Classifier

x

y

𝑃(𝑦 = 𝑎|𝒙𝒊)

Observation vector: [gaze, turn-taking,speech-energy]

Label : {0:Dominant, 1:Not-dominant}
(outcome)

(evidence)

Score function:

𝑃 𝑦|𝒙 =
𝑃 𝒙 𝑦 𝑃(𝑦)

𝑃(𝒙)

PriorLikelihood

Marginal likelihood

(partition)

Posterior
𝑃 𝒙 = ෍

𝑦

𝑃 𝒙 𝑦 𝑃(𝑦)

≈  𝑃 𝒙 𝑦 𝑃(𝑦) = 𝑃(𝒙, 𝑦)Bayes’ theorem:

Chain rule
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Dynamic 

Bayesian Network
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▪ Bayesian network with time-series to represent temporal 

dependencies.

▪ Dynamically changing or evolving over time.

▪ Directed graphical model of stochastic processes.

▪ Especially aiming at time series modeling.

▪ Satisfying the Markovian condition:

The state of a system at time t depends only on its immediate 

past state at time t-1.

Dynamic Bayesian Network (DBN)



Dynamic Bayesian Network (DBN)



Hidden Markov Models

hidden

states

observations

h0 h1 h2 h3 h4

x1 x2 x3 x4

Time

“the” “yellow” “house” “closed”



Factorial HMM

• Factorial HMM:

– ht and vt represent two different types of background information, 

each with its own history

– Observations xt depend on both hidden processes

• Model parameters:

– p(vt+1|vt), p(ht+1|ht), p(xt|ht,vt)

h1

x1 x2

ht ht+1

x3

hT-1

x4

hT

x5x1 xt xt+1 xT-1 xT

v1 vt vt+1 vT-1 vT

… …



The Boltzmann Zipper

• Both streams have a “memory” (ht and vt)

• Model parameters:

– p(ht+1|ht), p(xt|ht)

– p(vt+1|vt,ht+1), p(yt|ht)

h1

x1 x2

ht+1 hT

x5

…
x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

…



• Advantage over Boltzmann Zipper: More flexible, because 

neither vision nor sound is “privileged” over the other.

– p(ht+1|vt,ht), p(xt|ht)

– p(vt+1|vt,ht), p(yt|ht)

h1

x1 x2

ht+1 hT

x5x1 xt+1 xT

v1 vt+1 vT

x1 x2 x5y1 yt+1 yT
Video observations

Viseme states

Audio phoneme states

Audio spectral observationsx2

ht

xt

vt

x2yt

The Coupled HMM



Learning (Dynamic) Bayesian Networks

▪ Multiple techniques exist to learn the model 
parameters based on data

▪ Maximum likelihood estimator

▪ Bayesian estimator, which allows to include 
prior information

▪ Python libraries: 

▪ http://pgmpy.org/

▪ http://www.bayespy.org

▪ https://pomegranate.readthedocs.io/en/latest/

http://pgmpy.org/
http://www.bayespy.org/
https://pomegranate.readthedocs.io/en/latest/
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Variational 

AutoEncoder



Auto-encoder

z Decoder x’

Latent

space
Real

image

x Encoder

After learning this autoencoder, 

can I input any z vector in the decoder?

Synthesized

image



Variational Autoencoder

z Decoder x’

Latent

space
Real

image

x Encoder

KL loss

𝑝 𝑧 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝟏)
(Normal distribution)

Encourages z 

to follow a 

Gaussian distribution

𝑞𝜃 𝑧|𝑥 𝑝𝜙 𝑥|𝑧

Parameterized as Gaussian probability density 

Synthesized

image

𝑁𝑜𝑟𝑚𝑎𝑙(𝝁, 𝝈)



Variational Inference

▪ When inference is not possible

▪ Either relax the problem

▪ Or use variational methods

▪ Variational inference:

▪ Unroll through time (MCMC, Gibbs) –

RBM

▪ Mean-field Approximation (Fully 

Connected CRF)

𝑣1 𝑣2



Variational Auto-encoder

▪ The normal distribution has nice properties. 

But these images are not as realistic looking…
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Generative Adversarial 

Networks



Generative Network

How to train the generator to synthesize realistic images?

z Generator x’

0.3
0.1
…
0.9

Random 

vector

Synthesized

image



Generative Adversarial Network (GAN)

z Generator x’

0.3
0.1
…
0.9

Random 

vector

Synthesized

image

x
Real

image

OR Discriminator
Real

or 

fake

Trained to map any 

random vector to an 

image that can fool 

the discriminator Trained to distinguish 

synthesized images 

from real images

How to train both the generator and the discriminator?



GAN Training

z Generator x’

0.3
0.1
…
0.9

Random 

vector

Synthesized

image

x
Real

image

OR Discriminator
Real

or 

fake

How do we optimize 

this objective function?



GAN Training

z Generator x’

0.3
0.1
…
0.9

Random 

vector

Synthesized

image

x
Real

image

OR Discriminator
Real

or 

fake

1 Fix generator, and update discriminator

2 Fix discriminator, and update generator

Optimization:



Conditional GAN

z

Generator x’

Random 

vector

Synthesized

image

x|c
Real

image

OR Discriminator
Real

or 

fake

class: cat

c

Learn to synthesize 

class-conditioned 

image samples 

Trained to distinguish 

synthesized from real 

images, conditioned on 

the class label

How to train discriminator 

without conditioning 

explicitly on the class label?



Audio to Scene

https://wjohn1483.github.io/audio_to_scene/index.html

https://wjohn1483.github.io/audio_to_scene/index.html


Audio to Scene
L
o
u
d
e
r

https://wjohn1483.github.io/audio_to_scene/index.html

https://wjohn1483.github.io/audio_to_scene/index.html


Talking Head 

https://arxiv.org/abs/1905.08233

https://arxiv.org/abs/1905.08233


Info GAN

z

Generator x’

Random 

vector

Synthesized

image

Real

image

OR Discriminator
Real

or 

fake

class: cat

𝑐

x|𝑐

Ƹ𝑐

Learn to synthesize 

class-conditioned 

image samples 

Outputs both an 

authenticity decision and 

a class label prediction

What if we would like to also 

learn an encoder from x to z?



Talking Head 

https://arxiv.org/abs/1905.08233

https://arxiv.org/abs/1905.08233


Bidirectional GAN

z Generator x’

Random 

vector

Synthesized

image

Real

image

OR Discriminator
Real

or 

fake

xEncoderz’

Encoding of 

real image

Selects either 

(z’,x) or (z,x’)

Learn to map 

image to 

latent space

What if we would like 

to also learn an 

encoder from x to z?
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Paired and Unpaired Data
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Cycle GAN
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cAE-GAN

z Generator x’

Latent

space
Synthesized

image
Real

image

OR Discriminator

Real

or 

fake

x Encoder
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cVAE-GAN

z Generator x’

Latent

space
Synthesized

image
Real

image

OR Discriminator

Real

or 

fake

x Encoder

KL loss

𝑁 𝒛



BiCycle GAN

Let’s put everything in one model!!




