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Markov assumption + Fully observable

A state should summarize all past information and have the Markov 
property.

If some information is only partially observable: Partially Observable 
MDP (POMDP)
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Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning
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Intersection between RL and supervised learning
Imitation learning!

Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), …}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states

Sometimes not safe/possible to collect expert trajectories

Obtain expert trajectories (e.g. human driver/video demonstrations):
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So, how do we find Q*(s,a) and V*(s)? 

Recursively:
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2. Policy Improvement
Find the best action according to one-step look ahead

1. Policy evaluation
Iterate until convergence:

Repeat until policy converges. Guaranteed to converge to optimal policy.
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expectation equations 
we summed over all 
leaves, here we choose 
the best branch
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For the Bellman 
expectation equations 
we summed over all 
leaves, here we choose 
the best branch
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Value Iteration

Find the best action according to one-step look ahead

Repeat until policy converges. Guaranteed to converge to optimal policy.
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Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete 

state and action space
Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods



Solving unknown MDPs using function 
approximation
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Recap: Q-value iteration

This is problematic when do not know the transitions
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Tabular Q-learning update

learning rate

Key idea: implicitly estimate the transitions via simulation
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Epsilon-greedy

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal region, 
and never explore further.

Gradually decrease epsilon as policy is learned.
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Still requires small and discrete state and action space
How can we generalize to unseen states?
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Deep Q-learning

DQN, 2015

Q-learning with function approximation to 
extract informative features from 
high-dimensional input states.



Deep Q-learning



Deep Q-learning



Deep Q-learning



Experience replay

exploration, epsilon greedy is important!
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Fixed Q-targets

Update w- with updated w every ~1000 iterations
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Deep Q-learning for Atari

Encourage Markov property
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Superhuman results

Needs reaction speed
Short term reward
Less exploration required
Deep RL >>> humans

Super long term reward
More exploration required
Requires knowledge of 
complex dynamics e.g. key, 
ladder.
Challenge for deep RL



Superhuman results on Montezuma’s Revenge

Encourages agent to 
explore its environment by 
maximizing curiosity.
I.e. how well can I predict 
my environment?
1. Less training data
2. Stochastic
3. Unknown dynamics
So I should explore more.

Burda et. al., ICLR 2019 

http://www.youtube.com/watch?v=40VZeFppDEM
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Summary: Deep Q-learning

targetold estimate 

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Experience replay + Fixed Q-targets  


