
Intro to Reinforcement Learning

Paul Liang

pliang@cs.cmu.edu
@pliang279

Used Materials

Acknowledgement: Much of the material and slides for this lecture were
borrowed from the Deep RL Bootcamp at UC Berkeley organized by Pieter
Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy, as well as Katerina Fragkiadaki
and Ruslan Salakhutdinov’s 10-703 course at CMU, who in turn borrowed much
from Rich Sutton’s class and David Silver’s class on Reinforcement Learning, and
with inspiration from Chun Kai Ling and Hai Pham’s slides.

Contents

● Introduction to RL
● Markov Decision Processes (MDPs)
● Solving known MDPs using value and policy iteration
● Solving unknown MDPs using function approximation and Q-learning

Reinforcement Learning

ALVINN, 1989

Reinforcement Learning

ALVINN, 1989 AlphaGo, 2016 DQN, 2015

Reinforcement Learning

ALVINN, 1989 AlphaGo, 2016 DQN, 2015

Reinforcement Learning

Trajectory

Markov Decision Process (MDPs)

Markov Decision Process (MDPs)

Trajectory

Markov assumption + Fully observable

A state should summarize all past information and have the Markov
property.

Markov assumption + Fully observable

A state should summarize all past information and have the Markov
property.

If some information is only partially observable: Partially Observable
MDP (POMDP)

Return

Policy

Policy

Learn the optimal policy to maximize return

Goal:

Return:

Learn the optimal policy to maximize return

Goal:

Return:

Simple Example

Reinforcement Learning vs Supervised Learning

● Sequential decision making ● One-step decision making

Reinforcement Learning Supervised Learning

Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward

● One-step decision making
● Maximize immediate reward

Reinforcement Learning Supervised Learning

Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards

● One-step decision making
● Maximize immediate reward
● Dense supervision

Reinforcement Learning Supervised Learning

Reinforcement Learning vs Supervised Learning

● Sequential decision making
● Maximize cumulative reward
● Sparse rewards
● Environment maybe unknown

● One-step decision making
● Maximize immediate reward
● Dense supervision
● Environment always known

Reinforcement Learning Supervised Learning

Intersection between RL and supervised learning
Imitation learning!

Intersection between RL and supervised learning
Imitation learning!

Obtain expert trajectories (e.g. human driver/video demonstrations):

Intersection between RL and supervised learning
Imitation learning!

Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), …}

Obtain expert trajectories (e.g. human driver/video demonstrations):

Intersection between RL and supervised learning
Imitation learning!

Perform supervised learning by predicting expert action

D = {(s0, a*0), (s1, a*1), (s2, a*2), …}

But: distribution mismatch between training and testing
Hard to recover from sub-optimal states

Sometimes not safe/possible to collect expert trajectories

Obtain expert trajectories (e.g. human driver/video demonstrations):

Learn the optimal policy to maximize return

Goal:

Return:

State and action value functions

Captures long term reward

State and action value functions

Captures long term reward

Captures long term reward

Optimal state and action value functions

Optimal state and action value functions

Solving MDPs

Solving MDPs

Value functions

Relationships between state and action values

State value functions Action value functions

Relationships between state and action values

State value functions Action value functions

Relationships between state and action values

State value functions Action value functions

Relationships between state and action values

State value functions Action value functions

Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

So, how do we find Q*(s,a) and V*(s)?

Recursively:

Bellman expectation

Recursively:

Bellman expectation

Recursively:

By taking expectations:

Bellman expectation

Recursively:

By taking expectations:

Bellman expectation

Recursively:

By taking expectations:

Bellman expectation

Recursively:

By taking expectations:

Bellman expectation for state value functions

Bellman expectation for state value functions

Bellman expectation for state value functions

Bellman expectation for action value functions

Bellman expectation for action value functions

Bellman expectation for action value functions

Bellman expectation for action value functions

Solving the Bellman expectation equations

Solving the Bellman expectation equations

Solve the linear system

variables: for all s

constants: p(s’|s,a), r(s,a,s’)

Solving the Bellman expectation equations

Solve by iterative methods

Solve the linear system

variables: for all s

constants: p(s’|s,a), r(s,a,s’)

Policy Evaluation

Policy evaluation
Iterate until convergence:

Policy Iteration

2. Policy Improvement
Find the best action according to one-step look ahead

1. Policy evaluation
Iterate until convergence:

Policy Iteration

2. Policy Improvement
Find the best action according to one-step look ahead

1. Policy evaluation
Iterate until convergence:

Policy Iteration

2. Policy Improvement
Find the best action according to one-step look ahead

1. Policy evaluation
Iterate until convergence:

Repeat until policy converges. Guaranteed to converge to optimal policy.

Bellman optimality for state value functions

The value of a state under an optimal policy must equal the expected return for
the best action from that state

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Bellman optimality for state value functions

The value of a state under an optimal policy must equal the expected return for
the best action from that state

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Bellman optimality for action value functions

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Bellman optimality for action value functions

For the Bellman
expectation equations
we summed over all
leaves, here we choose
the best branch

Solving the Bellman optimality equations

Solving the Bellman optimality equations

Solve by iterative methods

Value Iteration

Value Iteration

Find the best action according to one-step look ahead

Value Iteration

Find the best action according to one-step look ahead

Repeat until policy converges. Guaranteed to converge to optimal policy.

Q-Value Iteration

Fully known
MDP

states
transitions

rewards

Summary: Exact methods

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Q-value iteration

Value iteration

Summary: Exact methods

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation

equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation

equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete

state and action space
Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods

Solving unknown MDPs using function
approximation

Recap: Q-value iteration

Recap: Q-value iteration

Recap: Q-value iteration

This is problematic when do not know the transitions

Tabular Q-learning

Tabular Q-learning

Tabular Q-learning

simulation and exploration

Tabular Q-learning update

learning rate

Key idea: implicitly estimate the transitions via simulation

Tabular Q-learning
Bellman optimality

Tabular Q-learning
Bellman optimality

Tabular Q-learning

Epsilon-greedy

Poor estimates of Q(s,a) at the start:

Bad initial estimates in the first few cases can drive policy into sub-optimal region,
and never explore further.

Gradually decrease epsilon as policy is learned.

Tabular Q-learning

Convergence

Tabular Q-learning
Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation

equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete

state and action space
Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods

Summary: Tabular Q-learning
MDP
with

unknown
transitions

Replace true
expectation over
transitions with

estimates

Bellman
optimality
equations

targetold estimate

simulation and exploration, epsilon greedy is important!

Tabular Q-learning

Summary: Tabular Q-learning
MDP
with

unknown
transitions

Replace true
expectation over
transitions with

estimates

Bellman
optimality
equations

targetold estimate

simulation and exploration, epsilon greedy is important!

Tabular Q-learning

Summary: Tabular Q-learning
MDP
with

unknown
transitions

Replace true
expectation over
transitions with

estimates

Bellman
optimality
equations

targetold estimate

simulation and exploration, epsilon greedy is important!

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Tabular Q-learning

Deep Q-learning

DQN, 2015

Q-learning with function approximation to
extract informative features from
high-dimensional input states.

Deep Q-learning

Deep Q-learning

Deep Q-learning

Experience replay

exploration, epsilon greedy is important!

Fixed Q-targets

Fixed Q-targets

Fixed Q-targets

Update w- with updated w every ~1000 iterations

Deep Q-learning for Atari

Deep Q-learning for Atari

Deep Q-learning for Atari

Deep Q-learning for Atari

Encourage Markov property

Superhuman results

Superhuman results

Needs reaction speed
Short term reward
Less exploration required
Deep RL >>> humans

Superhuman results

Needs reaction speed
Short term reward
Less exploration required
Deep RL >>> humans

Super long term reward
More exploration required
Requires knowledge of
complex dynamics e.g. key,
ladder.
Challenge for deep RL

Superhuman results on Montezuma’s Revenge

Encourages agent to
explore its environment by
maximizing curiosity.
I.e. how well can I predict
my environment?
1. Less training data
2. Stochastic
3. Unknown dynamics
So I should explore more.

Burda et. al., ICLR 2019

http://www.youtube.com/watch?v=40VZeFppDEM

Fully known
MDP

states
transitions

rewards

Bellman
optimality
equations

Bellman
expectation

equations

Repeat until policy converges. Guaranteed to converge to optimal policy.

Limitations:
Iterate over and storage for all states and actions: requires small, discrete

state and action space
Update equations require fully observable MDP and known transitions

Policy iteration

Q-value iteration

Value iteration

Q-policy iteration

Summary: Exact methods

Summary: Tabular Q-learning
MDP
with

unknown
transitions

Replace true
expectation over
transitions with

estimates

Bellman
optimality
equations

targetold estimate

simulation and exploration, epsilon greedy is important!

Tabular: keep a |S| x |A| table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Tabular Q-learning

Summary: Deep Q-learning

targetold estimate

Summary: Deep Q-learning

targetold estimate

Summary: Deep Q-learning

targetold estimate

Works for high-dimensional state and action spaces
Generalizes to unseen states

Stochastic gradient descent + Experience replay + Fixed Q-targets

