Intro to Reinforcement Learning Part |

Paul Liang

pliang@cs.cmu.edu
Y @pliang279

Used Materials

Acknowledgement: Much of the material and slides for this lecture were
borrowed from Pieter Abbeel, Yan Duan, Xi Chen, and Andrej Karpathy’s Deep RL
Bootcamp at UC Berkeley, Fei-Fei Li, Justin Johnson, and Serena Yeung's CS231N
course at Stanford, as well as Katerina Fragkiadaki and Ruslan Salakhutdinov’s
10-703 course at CMU, who in turn borrowed much from Rich Sutton’s class and
David Silver’s class on Reinforcement Learning.

Recap: Markov Decision Process (MDPs)

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’|s, a)
Reward function R(s, a, s’)
Start state s,

Discount factor y

Horizon H

| Agent ||
state reward action

Sr Rl A,

Rt+l (.
<S_M_L Environment

So, Ao, 7T0,51,01,71,52,02,72, ...

Trajectory

Recap: Return

In continuing tasks, we often use simple total discounted reward:
©.@)
Gt = Riy1+YRip2 + ... = "R
t t+1 T VL2 T .. VLt k41
k=0

v close to 0 leads to " myopic” evaluation
v close to 1 leads to "far-sighted” evaluation

Recap: Policy

Definition: A policy is a distribution over actions given states,
n(a|s) =Pr(A,=alS,=s),Vt

A policy fully defines the behavior of an agent
The policy is stationary (time-independent)

During learning, the agent changes his policy as a result of
experience

Special case: deterministic policies

n(s) = the action taken with prob =1 when S, = s

Recap: MDPs, Returns, Policies

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’|s, a)
Reward function R(s, a, 5')
Start state s,

Discount factor y

Horizon H

| Agent ||
state reward action

St RI Ar

. Rt+1 (
< Environment]4—
\
Return:

Gi=Rip1 + VR0 + ... = ZWkRﬂ-kH
k=0

t=0

- H
- *- Goal: arg max E Z V' Ry|m
|

s

Reinforcement Learning vs Supervised Learning

Reinforcement Learning

Sequential decision making
Maximize cumulative reward
Sparse rewards

Environment maybe unknown

Supervised Learning

One-step decision making
Maximize immediate reward
Dense supervision
Environment always known

Recap: Exact methods g+ 4) = E., [r(w’sl) + ymax Q*(S,,a,)}

* . .
Bellman Q (S, a,) Q-value iteration
optimality

Fully known : % i i
K/IDP equations V (S) Value iteration
states

transitions

rewards Bellmar) 4 (37 a,) Q-policy iteration
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Recap: Exact methods g+ 4) = E., [r(87a78/) ymax Q" (S,ﬂ,)]

Bellman Q* (S, a,) Q-value iteration

Fully known optimality % o
K/IDP equations V (S) Value iteration
states

transitions

rewards BeIITatr.m 4 (57 a) Q-policy iteration
expectation
equations VT (8) Policy iteration

Repeat until policy converges. Guaranteed to converge to optimal policy.

Iterate over and storage for all states and actions
Requires small, discrete state and action space
Update equations require fully observable MDP and known transitions

Recap: Tabular Q-learning

M!i : Bellman Repltacfc_e true
wi —— optimality ——— €Xpectation over Tabular Q-learning
unknown . transitions with
. equations .
transitions estimates

s ~ P(S, |3, a) simulation and exploration, epsilon greedy is important!

Q* (87 a’) — ESI |:’r(87 a’7 8/) _I_ fyII]C‘La,’X Q*(8’7 a'/):|

old estimate target

Recap: Tabular Q-learning

MDP Replace true

ith Bellman tati
wi — optimality — expectation over Tabular Q-learning
unknown . transitions with
. equations .
transitions estimates

s ~ P(S, |3, a) simulation and exploration, epsilon greedy is important!

Q* (87 a’) — IESI |:’r(87 a’7 8/) _I_ fyH]C‘La,'X Q* (8,7 a'/):|

old estimate target

Qk+1(8a a) A Qk’(sa a) +a (7’(8, a, S/) + ’ynif}x Qk(sla CI,/) - Qk(37 CL))

Tabular: keep a |S| x |A] table of Q(s,a)
Still requires small and discrete state and action space
How can we generalize to unseen states?

Recap: Deep Q-learning

Q(s,aq,w) - Qfs,a,,w)

1t}
)
I

Q*(S’ CL) = Ey [T(Sa a, S,) + 7y max Q*(S/, CL/)]

old estimate target

L; (Wi) — Es,a,r,s’N’D;

2
(r + 7 max Q(s', a: Wi_) — Q(s, a; w,-))]

e F % o
Y Y

Q-learning target Q-network

Recap: Deep Q-learning

51,4d1,2,52
» Sample random mini-batch of transitions (s,a,r,s’) from D S5, @2, 3,53
» Compute Q-learning targets w.r.t. old, fixed parameters w- 53,43, I'4, 54
» Optimize MSE between Q-network and Q-learning targets Sty dt, N't+1, St+1
¢ 4 Q(s,aq,w) - Q(s,a,,w)
i (W,) — s ,a,r,s'~D; (I’ -+ G | ma:;x Q(s’, a’; W’._) — Q(S, a, W,)) T T T
N 7F K it

» Use stochastic gradient descent

Update w- with updated w every ~1000 iterations

Y Y
Q-learning target Q-network /\/\
w
I

Recap: Deep Q-learning

/ / /
i~] Q*(s,a) = Eg [r(s, a,s) + 7 max Q*(s',a)]
T old estimate target
2
/\/\ Lilwi) =Ee s ratiip, (r + 7y mazlax Qs 4 w) — Q(s, a; w,-))]
w
N\ 7z 5 .,
T Y Y
Q-learning target Q-network

S

Stochastic gradient descent + Exploration + Experience replay + Fixed Q-targets

Works for high-dimensional state and action spaces
Generalizes to unseen states

Recap: Obtaining the optimal policy

Optimal policy can be found by maximizing over Q*(s,a)

. 1 —e, if a = argmax, Q*(s,a)
m(als) = € else

Recap: Obtaining the optimal policy
Optimal policy can be found by maximizing over Q*(s,a)
7)) = {1 — €, if a = argmax, Q*(s,a)
€, else

Optimal policy can also be found by maximizing over V*(s’) with one-step look ahead

. 1 —e, if a = argmax, Ey [r(s,a,s’) +yV*(s')]
m(als) = {e else

V*(s)

Contents

e Policy gradient methods
e Actor-critic
e Applications: RL and language

Value-based and Policy-based RL

» Value Based
- Learned Value Function

- Implicit policy (e.g. e-greedy)

State value functions Action value functions

V7™(s) Q" (s,a)
V*(s) Q" (s,a)

7" (als) = 1-¢ ifa=argmax,Ey[r(s,a,s) + V()] 7 (als) = 1—e¢ ifa=argmax, Q*(s,a)
€, else €, else

Value-based and Policy-based RL

» Value Based
- Learned Value Function
- Implicit policy (e.g. e-greedy)

raw pixels hidden layer
‘\'/1/{/. - probability of
S\ P
&S0
FR T
EASRN

XX
/NG

» Policy Based

- No Value Function

- Learned Policy

mo(s,a) =Pla | s, 0]

Directly learning the policy

= Often 77 can be Simpler than QorV Q(s,a) and V(s) very high-dimensional

= E.g., robotic grasp But policy could be just ‘open/close hand

Directly learning the policy

= Often 77 can be simpler than Q or V Q(s,a) and V(s) very high-dimensional

= E.g., robotic grasp But policy could be just ‘open/close hand

= V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve arg max Qg(s, u)
u

= Challenge for continuous / high-dimensional action spaces’

7" (als) = 1-¢ ifa=argmax,Ey[r(s,a,s) + V()] 7 (als) = 1—e¢ ifa=argmax, Q*(s,a)
€, else €, else

Value-based and Policy-based RL

» Value Based
Learned Value Function
Implicit policy (e.g. e-greedy)

» Policy Based Value Function Policy

No Value Function

Learned Policy Actor

Value-Based Critic

Policy-Based

» Actor-Critic
Learned Value Function

Learned Policy

Value-based and Policy-based RL

Policy-based Value-based

= Conceptually: Optimize what you care Indirect, exploit the problem

about structure, self-consistency

Value-based and Policy-based RL

Policy-based Value-based
= Conceptually: Optimize what you care Indirect, exploit the problem
about structure, self-consistency
= Empirically: More compatible with rich More compatible with
architectures (including exploration and off-policy
recurrence) learning
More versatile More sample-efficient when
they work
More compatible with
auxiliary objectives

Pong from pixels

Pong from pixels

raw pixels hidden layer

e.g.,
height width

[80 x 80]
array of

Pong from pixels

raw pixels hidden layer

e.g., . . .
height width q{/{ . prob.ability of
N2 7 moving UP
[80 x 80] : XA
array of }g@w,w
<z

Network sees +1if it scored a point, and -1if it was scored against.
How do we learn these parameters?

Pong from pixels

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

Pong from pixels

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

maximize:

Zi log p(yi|xi)

raw pixels

hldden layer

Vo "VA
29 OAV‘

VZ&

Pong from pixels

Except, we don’t have labels...

raw pixels hidden layer

Should we go UP or DOWN?

Pong from pixels

Let’s just act according to our current policy...

raw pixels

hidden layer

Rollout the policy
and collect an
episode

WIN

Pong from pixels

Collect many rollouts...

4 rollouts:

. UP >.DOWN», UpP ». upP >.DOWN». DOWN».DOWN». UP ». WIN
UP DOWN UP UP LOSE
DOWN DOWN DOWN DOWN UP LOSE
UP DOWN UP UP WIN

!

Pong from pixels

Not sure whatever we did here, but

apparently it was good.

uP DOWN DOWN

DOWN

uP

b
5

@

@

DOWN uP uP

DOWN DOWN

DOWN

UP

-

DOWN

® o o

¢ o o o

WIN
LOSE

LOSE
WIN

Pong from pixels

Not sure whatever we did here, but it was bad.

DOWN uP

0" .@ WIN
LOSE
.o LOSE

WIN

Pong from pixels

Pretend every action we took here Pretend every action we took

was the correct label.

maximize: logp(y, Ixi)

here was the wrong label.

maximize: (—1) * logp(y,- | xi)

DOWN

>.U

=]

@

WIN
LOSE
LOSE
WIN

Pong from pixels

Discounting

Blame each action assuming that its effects have
exponentially decaying impact into the future.

Discounted rewards
0.21 024 0.27 -0.81 -0.9

2

A

~

x log p(vi|xi)

-1

0

0

uP DOWN UP uP DOWN

DOWN

3 & 3 $ 5 2 .DOWN » uP P

Reward +1.0
\gamma =0.9

Reward -1.0

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
e

Collect a bunch of rollouts with the policy epsilongreedy!

UP DOWN UP UP DOWN DOWN DOWN UP WIN
DOWN o UP UP DOWN UP UP LOSE
® UP . HRE P DOWN=' DOWN> 2 DOWN & DOWN » UP @ LOSE
DOWN o UP UP DOWN UP UP WIN

f i

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
3
4

. Collect a bunch of rollouts with the policy epsilongreedy!
. Increase the probability of actions that worked well
Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.
maximize: log p(y;i | xi) maximize: (—1) * log p(y; | x:) E l'l' Ai * log p()}i |Xi)
UP o DOWN o UP UP o DOWN_o DOWN g DOWN o UP WIN
o OWgP g UP gUOWN G W o P o LOSE
up uP DOWN o DOWN_o DOWN_g DOWN_ g UP LOSE
DOWN o UP UP o DOWN o UP uP WIN

raw pixels hidden layer

Pong from pixels n(als)

1. Initialize a policy network at random
2. Repeat Forever:
e
4.

Collect a bunch of rollouts with the policy epsilongreedy!
Increase the probability of actions that worked well

Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.
maximize: log p(y;i | xi) maximize: (—1) * log p(y; | x:) E l'l' Ai * log p()}i |Xi)
uP DOWN_ g UP uP DOWN_o DOWN_ g DOWN_o UP WIN
Does not require transition probabilities
DOWN G UP g UP g DOWN o UP uP LOSE q * P
- - - - - Does not estimate Q(), V()
uP uP DOWN o DOWN_o DOWN_o DOWN o UP LOSE . . .
Predicts policy directly
DOWN o UP uP DOWN uP uP WIN

Pong from pixels

http://www.youtube.com/watch?v=YOW8m2YGtRg

Policy gradients

Why does this work?

Initialize a policy network at random
Repeat Forever:
Collect a bunch of rollouts with the policy

S w NP

Increase the probability of actions that worked well

Zi Ai *x logp(yi |x,-)

Policy gradients

Formally, let’s define a class of parametrized policies: II = {7y, 0 € R™}

For each policy, define its value:

J(O)=E nyt'rt\m

t>0

Policy gradients

Writing in terms of trajectories t = (sq, ag, 1o, 51,01, 71, ...)
Probability of a trajectory Reward of a trajectory

p(1;0) = mg(ap|so)p(s1|so, ao) r(r) = thm
x mg(a]s1)p(s2s1,a1) £>0
x 7o (az|s2)p(s3|s2, az)
X ...

— H p(8t+1 ‘St, at)ﬂ-g(atlst>

t>0

Policy gradients

Writing in terms of trajectories t = (sq, ag, 1o, 51,01, 71, ...)
Probability of a trajectory Reward of a trajectory

p(1;0) = mg(ap|so)p(s1|so, ao) r(r) = thm
x mg(a]s1)p(s2s1,a1) £>0
x T (az|s2)p(s3|s2, az)
X ...

— Hp<8t+1 |St, at)ﬂ-O(atlst)

t>0

t>0

J(@) =E |:Z 'Ytrtﬂ'Q:| = IETNp(T;H) [T(T)]

Policy gradients

Formally, let’s define a class of parametrized policies: II = {7y, 0 € R™}

For each policy, define its value:

JO)=E | Y 'rilmg| =Erupirso) (7))

>0

Policy gradients

Formally, let's define a class of parametrized policies: II = {7y, 0 € R™}

For each policy, define its value:

JO)=E | Y 'rilmg| =Erupirso) (7))

>0

We want to find the optimal policy #* = arg max J(0)

How can we do this?

Policy gradients

Formally, let's define a class of parametrized policies: II = {7y, 0 € R™}

For each policy, define its value:

J(@) =3 Z 'Ytrt‘ﬂ'H —]E’TNp<T;9) [T(T)]
t>0

We want to find the optimal policy #* = arg max J(0)

How can we do this?

Gradient ascent on policy parameters

REINFORCE algorithm

Expected reward: J(0) = E. (.0 [7(7)]

_ / r(1)p(7:0) dr

T

REINFORCE algorithm

Expected reward: J(0) = E (.0 [7(7)]

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

>0

Now let's differentiate this: V4.J(0) = /T(T)Vgp(T; 0) dr Intractable! Gradient of an

expectation is problematic when p

T depends on 6

REINFORCE algorithm

Expected reward: J(0) = E (.9 [7(7)]

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

t>0

Now let's differentiate this: V4.J(0) = /T(T)VQP(T; 0) dr Intractable! Gradient of an

expectation is problematic when p
depends on 6

Vop(T;0)
p(7;0)

T

However, we can use a nice trick: Vyp(7;60) = p(7;0)

Y

= p(7;0)Vologp(T;0)

REINFORCE algorithm

Expected reward: J(f) = ETNP(T;Q) (7))

_ / r(Op(ri0) dr | p(r:6) = [plsearlse ar)mo(adse)

>0

expectation is problematic when p
depends on 6

However, we can use a nice trick: va(T; 9) = p(T; 9) Vgp(T; 9)
If we inject this back: p(7;0)

Vol (0) = [(r(r)Valogp(r:0)) p(r:0) dr

=E,p(r0) [1(T) Vo log p(7;0)]

Now let's differentiate this: V4.J(0) = /T(T)Vgp(T; 0) dr Intractable! Gradient of an

T

= p(7;0)Vologp(T;0)

Tractable :-)

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7;0) = HP(St+1|3taat)770(at|8t)
t>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7:0) = | [p(sts1lse, ar)mo(aslse)

+>0
Thus: logp(T;0) = Z (log p(St+1|st,ar) +logmo(at|st))

t>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7;0) = Hp(5t+1|3t, at)mo(at|st)
>0
Thus: logp(7;6) = > _ (log p(siy1lst, ar) + log wo(alst))

t2>0 Doesn’t depend on

And when differentiating: Vg log p(7; 0) Z Vg log mg(at|st) transition probabilities!
t>0

REINFORCE algorithm

Can we compute these without knowing the transition probabilities?

We have: p(7:0) = | [p(st41lse, ar)mo(aslse)
t>0
Thus: logp(T;0) = Z (log p(St+1|st,ar) +logmo(at|st))

t2>0 Doesn’t depend on

And when differentiating: Vy logp T, 9 Z Vg log 7T9(at|8t) transition probabilities!
t>0
Therefore when sampling a trajectory z, we can estimate J(6) with

VoJ (0) = Erpirio) [r(T) Ve logp(r;0)] = Y " r(1)Vlog mo(aylsy)

>0

Intuition

Gradient estimator: VQJ(Q) ~ Z T(T)V@ log g (at\st)

t>0

Interpretation:

- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

Interpretation:

VoJ(0) ~ Z r(7)Vologmg(as|st)

>0

- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Pretend every action we took here
was the correct label.

maximize: logp(y, | Xi)

Pretend every action we took
here was the wrong label.

maximize: (—1) * logp(yi | X;)

UP DOWN UP UP DOWN DOWN DOWN

UP

DOWN g UP uP DOWN uP uP
L ~@ ~@ ~@ . - .4

uP uP DOWN o DOWN_ o DOWN_g DOWN o UP
*—0—0 0 ~® - @ ~®

DOWN UP UP DOWN UP UP

HE E N

WIN
LOSE
LOSE
WIN

raw pixels

hidden layer

i\\ /// » probability of
XEZH) moving UP
XL //m :
KR .

Intuition
Gradient estimator: VQJ(Q) ~ Z T(T)V@ log g (at\st)

t>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als,@),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,S7-1, Ar_1, Ry, following (|-, 6)
For each step of the episode t =0,...,T — 1:
G + return from step ¢t
0« 0+ a’)’tGgVG logvr(Atlst, 0)

Intuition
Gradient estimator: V@J(Q) ~ Z r(T)V9 log g (at\st)

t>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als,@),Va € A,s € §,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,97-1, A1, RTl following 7 (-|-, 0)|
For each step of the episode t =0,...,T — 1:
G + return from step ¢t
0 «— 0 + a’)’tGgVO logvr(AtISt, 0)

epsilon greedy

Intuition
Gradient estimator: V@J(Q) ~ Z r(T)V9 log g (at\st)

>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Variance reduction with a baseline

Problem: The raw value of a trajectory isn’'t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Variance reduction with a baseline

Problem: The raw value of a trajectory isn’'t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

Vo (0) = Y (r(r) —b(st)) Vo log mo(axls:)

>0

e.g. exponential moving average of the rewards. Provably reduces variance while remaining unbiased.

Actor-critic methods

A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Actor-critic methods

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q™ (s¢,at) — V" (st)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:

Vo (0) = Y (Q™ (st,ar) — V™ (s1)) Vo log mo(as|st)

>0

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

'

Fully ¢
connected LSTM

| (256 units)

layer (256 units)

A3C Policy Learning Module

(1 unit)

Value Function
Q(s,a)

Policy Function :

(3 units) T (CL|S) é

mo(als)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?
Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

e T L Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

l (1 unit)
Value Function
Q(s,a) (als)
Policy Function : 7T9 a|s
(¢ units) 5 Actor: decides what actions to take
e mo(als)

' connected LSTM

. layer (256 units)
+ (256 units)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?
Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

e T L Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

i 2

l (1 unit) Li(w;) = Es ar,s~D; (r +7 max Q(s,d;w;) — Q(s, a w,-))]
Value Function ! \ ~ J ——
Q (S, a) i Q-learning target Q-network

mo(als)

Actor: decides what actions to take

Policy Function :

(3 units) T (CL|S) é

Fully ¢
' connected LSTM

. layer (256 units)
+ (256 units)

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?
Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

e T L Critic: evaluates how gOOd the actionis
: A3C Policy Learning Module

i 2

l (1 unit) Li(w;) = Es ar,s~D; (r +7 max Q(s,d;w;) — Q(s, a w,-))]
Value Function ! \ ~ J ——
Q (S, a) i Q-learning target Q-network

mo(als)

Policy Function :

Actor: decides what actions to take

(3 units) '
 py mo(als)
' connecte LSTM i
 layer (256 units) ' Vo J(0) ~ Z (Q™ (st,ar) — V™ (s1)) Vo log mo(as|se)
i (256 units) . t>0

Minh et. al., ICML 2016

Actor-critic methods

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

'

Fully ¢
' connected LSTM

| (256 units)

layer (256 units)

__

A3C Policy Learning Module

(1 unit)

Value Function !

Q(s,a)

Exploration

+ experience replay

Decorrelate samples
Fixed targets

Policy Function :

mo(als)

(3 units)

mo(als)

Minh et. al., ICML 2016

Summary of RL methods

» Value Based

Value iteration
Policy iteration

(Deep) Q-learning . |mplicit policy (e.g. e-greedy)

Learned Value Function

+ Policy Based Value Function Policy

Policy gradients . No Value Function
Learned Policy Act
Value-Based i Policy-Based
Critic
» Actor-Critic
Actor (polic :

Critic (Q(F-)valu);)s) - Learned Value Function

Learned Policy

Applications: RL and Language

RL and Language

Task-independent

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered |...]
[...] unless the correct key is inserted [...]

Pre—trainingl

Action

/—)

Pre-trained

Environment

Vkey Vskull Vliadder Vrope

Luketina et. al., IJCAI 2019

RL and Language

Task-independent

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered |...]

[...] unless the correct key is inserted [...]

Pre—trainingl

Pre-trained

Vkey Vskull Vliadder Vrope

Action

/—>

Environment

Task-dependent

Language-assisted

Key Opens a door of the same color as
the key.

Skull They come in two varieties, rolling
skulls and bouncing skulls ... you must
jump over rolling skulls and walk under
bouncing skulls.

Language-conditional

Go down the ladder and walk right im-
mediately to avoid falling off the conveyor
belt, jump to the yellow rope and again
to the platform on the right.

Luketina et. al., IJCAI 2019

Language-conditional RL

e Instruction following
e Rewards from instructions
e Language in the observation and action space

Language-conditional RL: Instruction following
e Navigation via instruction following

Train

| Go to the short red torch |
Go to the blue keycard
Go to the largest yellow object ‘
. Go to the green object
\

Test

Go to the red keycard

Go to the tall green torch
Go to the green torch Go to the smallest blue object

Chaplot et. al., AAAI 2018
Misra et. al., EMNLP 2017

Language-conditional RL: Instruction following

e Navigation via instruction following

Go to the green torch

Train

' Go to the short red torch

Go to the blue keycard
Go to the largest yellow object

. Go to the green object \

Test

Go to the tall green torch
Go to the red keycard ‘
Go to the smallest blue object

Fusion

Alignment

Ground language

Recognize objects

Navigate to objects
Generalize to unseen objects

Chaplot et. al., AAAI 2018
Misra et. al., EMNLP 2017

Language-conditional RL: Instruction following

Interaction with the environment

at]e

Action

Agent

,ﬁ, :

+1.0 correct

at Reward Tt ‘ —0.2 incorrect

0 otherwise

St

P,

Environment

Chaplot et. al., AAAI 2018

Language-conditional RL: Instruction following

e (ated attention via element-wise product

Image Representation . ; } .
= £(I;; Bcony) Gated-Attention Multimodal Fusion Unit
x;1 = fUt; Oconv i e e e e e e e e ko .

Mga(x;, %) = M(a,)Ox; :

To policy
learning

module Fusion
Alignment
Ground language
Recognize objects

Instruction oD Ma)
; a, = n(xg a
Representatlon Attention Vector

e e Wi Tl e e e aiabu

Chaplot et. al., AAAI 2018

Language-conditional RL: Instruction following

e Policy learning

* Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.)
* uses a deep neural network to parametrize the policy and value functions and runs
multiple parallel threads to update the network parameters.
* use entropy regularization for improved exploration

* use Generalized Advantage Estimator to reduce the variance of the policy gradient
updates (Schulman et al.)

A3C Policy Learning Module

l (1 unit)
; Value Function !
V(L)

., Policy
Policy Function | TI(all,, L)
i (3 units) M(all;, L)

' Fully
— ! connected LSTM
Multimodal i layer (256 units)
Fusion Output : (256 units)

Chaplot et. al., AAAI 2018

M(xl,'xl)

Language-conditional RL: Instruction following

\ EASY | | MEDIUM { HARD }

00000 O o ©

Chaplot et. al., AAAI 2018

http://www.youtube.com/watch?v=JziCKsLrudE

Language—conditional RL: Instruction following

blue <___T__s:;s;*
|

I S

red 4——|-—:—__
: | greqﬁ red o

green <« “F 1= s §reen Splect:

lar es(ree object-
| | o tall opject-

Grounding is important for
generalization
blue armor, red pillar -> blue pillar

1| ISmairest ect- e §
- = argest yellow o ec: 'y
yellow T I jt.l.oh : eE
| ful
: 1 : qreenannor_: : armor
. ,fﬂ’ |
1 1 : shorttall re Jar
1
L : .
B 11 - pillar
e i
1 1 1 bluesorlmc
"*,"" ;.f' I
! eenshon C "
L
|
| — torch
————-elue.,
1
_____ ot [e o 2 — 1T skullkey

OV 25 A BARNIARARNIAIDIARADHROPIIAPHHHSARUANAGNARRN R RARNMINSOGE? C h a p I Ot et al A A AI 2 O'I 8
. dl.,

Language-conditional RL: Rewards from instructions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

|

Montezuma’s revenge

Language-conditional RL: Rewards from instructions

Montezuma’s revenge

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Encourages agent to

explore its environment by

maximizing curiosity.

How well can | predict my

environment? Pathak et. al., ICML 2017
1. Less training data Burda et. al., ICLR 2019
2. Stochastic

3. Unknown dynamics

So | should explore more.

Language-conditional RL: Rewards from instructions

Sparse, long-term reward problem
General solution: reward shaping via auxiliary rewards

Natural language for reward shaping

‘Jump over the skull while going to the left”

from Amazon Mturk :-(
asked annotators to play the
game and describe entities

Intermediate rewards to speed up learning
Montezuma’s revenge

Goyal et. al., IJCAI 2019

Language-conditional RL: Rewards from instructions

Natural language for reward shaping

Montezuma’s revenge

Encourages agent to take actions related to the instructions

. Jump over the
Action- skull while
fl‘equency going to the left.
vector +
LanguagE-Action
» Reward Network »
(LEARN)
Probabilities
Sequence of (RELATED /
past actions ¢——— UNRELATED)
(al,...,at,l) ‘
—» Agent = T
Observation . anguage
I Action reward
Reward

Environment]

Goyal et. al., IJCAI 2019

Language-conditional RL: Rewards from instructions

Natural language for reward shaping

Encourages agent to take actions related to the instructions

All tasks

U 1750 1 —— EXtOnly
2 1500 - Ext+Lang

v 1250

No. of successful

Montezuma’s revenge . 4 . s 0 i
No. of timesteps / 100,000

Goyal et. al., IJCAI 2019

Language-conditional RL: Language inS and A

e Embodied QA: Navigation + QA

g Q: What color is the car?

FORWARD
- D
[nn snn
0O %

||||||||

Most methods similar to instruction following

B3
TURN LEFT d
B t !
g’;“

Das et. al., CVPR 2018

http://www.youtube.com/watch?v=gVj-TeIJfrk

Language-assisted RL

e lLanguage for communicating domain knowledge
e lLanguage for structuring policies

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

fromm Amazon Mturk :-(
asked annotators to play
the game and describe
entities

* is 2 randomly moving enemy

' “ . is a stationary immovable wall

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

(s, 2)
E is an enemy who chases you State S voi
e
is a stationary collectible :
IE‘ is a randomly moving enemy (2 RO/ L3TH .
u jat ©
“ . is a stationary immovable wall Description Q|
e
’Uzi

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

&(s,2) Q(s,ay,w) - Q(s,a,w)
E is an enemy who chases you State S voi
is a stationary collectible :
' @ ey v rey (5 — o
| 25 @&
. is a stationary immovable wall Description Q. T
e
J S
’Uzi

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e Properties of entities in the environment are annotated by language

Fusion problem

¢(S, Z) Q(s!a1 ,W) o Q(S,am,W)
E is an enemy who chases you State S voi
is a stationary collectible :
IE‘ is a randomly moving enemy BOW/LSTM .
| 24 @
. is a stationary immovable wall Description . T
S
vzi

Grounded language learning
Helps to ground the meaning of text to the dynamics, transitions, and rewards
Language helps in multi-task learning and transfer learning

Narasimhan et. al., JAIR 2018

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

ok

INeWSYork

Figure 1: An excerpt from the user manual of the game
Civilization II.

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population
settles affects its ability to produce food and goods.
Build your city on a plains or grassland square with
a river running through it if possible.

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Map tile attributes:
.) - Terrain type (e.g. grassland, mountain, etc)
The natural resources available where a population - Tile resources (e.g. wheat, coal, wildlife, etc)

settles affects its ability to produce food and goods. City attributes:

; ; : . - City population
Build your city on a plains or grassland square with _ Bmotint of o8 prodiced

a river running through it if possible. Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

The natural resources available where a population

a river running through it if possib

1. Choose relevant sentences

settles affects its ability to pgaduce.foad and goods.
Build your city on a plains o square with
e.

Map tile attributesa
- Terrain type (e. puntain, etc)
- Tile resources (&Tg=wirear=coar, wildlife, etc)
City attributes:
- City population
- Amount of food produced
Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

2. Label words into action-description, state-description, or background

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Map tile attributes:
. . - Terrain type (e.g. grassland, mountain, etc)
The natural resources available where a population - Tile resources (e.g. wheat, coal, wildlife, etc)

settles affects its ability to produce food and goods. City attributes:

; ; : . - City population
Build your city on a plains or grassland square with _ Bmotint of o8 prodiced

a river running through it if possible. Unit attributes:
- Unit type (e.g., worker, explorer, archer, etc)
- Is unitin a city ?

1. Choose relevant sentences
2. Label words into action-description, state-description, or background

Q(s,a,w)

Input layer: Z(s, a,d) L Deterministic feature
layer: f(s,a,d,y;,zj) T
l f <_Output layer /\/\
7 w
\ Hidden layer encoding

sentence relevance T
S

I Hidden layer encoding
/;_ . .

Branavan et. al., JAIR 2012

predicate labeling

» ——P

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

e Phalanxes are twice as effective at defending cities as warriors. /
e Build the city on plains or grassland with a river running through it. /
e You can rename the city if you like, but we'll refer to it as washington. Relevant sentences

e There are many different strategies dictating the order in which
advances are researched

e After the road is built, use the settlers to start improving the terrain.
5

S S A A A A A
e When the settlers becomes active, chose build road. A action—description
s s 5 AL A A S: state-description
) Uie settlers or engineers to improve a terrain square within ﬂe C|_ty radius
A S¥ A A S AX S Si 5 s

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

Method % Win | % Loss | Std. Err.
Random 0 100 —
Built-in Al 0 0 —
Game only 17.3 53 £ 2.7
Sentence relevance | 46.7 2.8 + 3.5
Full model 53.7 59 + 3.5
Random text 40.3 4.3 + 34
Latent variable 26.1 3.7 + 3.1

Grounded language learning
Ground the meaning of text to the dynamics, transitions, and rewards
Language helps in learning

Branavan et. al., JAIR 2012

Language-assisted RL: Domain knowledge

e learning to read instruction manuals

o 1.5
O
C
©
5
0

o 1_m ol
£ o 2
= | 22| |5
v 8ru “— ©

w E o <
305_4-"5 EE
@y e > O ® G
() = o O o
o
)
)
I_ O Pt % 4 I ___J ¢ ¢t ___ | __ A _ 941 1 _ ¥ _F __ & 3 __ 1 __1_ __1I

20 40 60 80
Game step

Language is most important at the start when you don’t have a good policy
Afterwards, the model relies on game features

Branavan et. al., JAIR 2012

Language for structuring policies

e Composing modules for Embodied QA

Q: What color is the sofa
in the living room?

%9

9o LB 1 S p) .8~ J3
Ltgg- t/ffo\-"-n/ttt\o-"-»t;»?tfo\-"-» Grey

LN D O WG

Exit-room Find-room|[living] Find-object[sofa] Answer

Das et. al., CoRL 2018

Language for structuring policies

e Composing modules for Embodied QA

mmm find object
m find room
B exit room

75 100 125
Action steps from target

Das et. al., CoRL 2018

Summary of RL methods

» Value Based

Value iteration
Policy iteration

(Deep) Q-learning . |mplicit policy (e.g. e-greedy)

Learned Value Function

+ Policy Based Value Function Policy

Policy gradients . No Value Function
Learned Policy Act
Value-Based i Policy-Based
Critic
» Actor-Critic
Actor (polic :

Critic (Q(F-)valu);)s) - Learned Value Function

Learned Policy

Summary of applications

Instruction following

Train

Go to the short red torch
Go to the blue keycard
Go to the largest yellow object

Go to the green object

Test

Go to the tall green torch
Go to the red keycard
Go to the green torch Go to the smallest blue object

Language for rewards

[

‘Jump over the skull
while going to the left”

Summary of applications

Instruction following Language as domain knowledge

Train

Go to the short red torch
Go to the blue keycard

[N .
®7] is an enemy who chases you

Go to the largest yellow object is a stationary collectible

Go to the green object

TP

Test
Go to the tall green torch by & randomiy moving enemy
Go to the green torch Go to the smalln Bl objct I 52 staionary immovable vall
Language for rewards Language to structure policies

Q: What color is the sofa
in the living room?

S

1"91 l“yz "93
Lbﬁ?fﬁf.-lLbffff.-ILfi¢#ff.-IL Grey

I I O O

Exit-room Find-room[living] Find-object[sofa] Answer

‘Jump over the skull
while going to the left”

;.;}.x
E 7

